Accurate subgrid-scale (SGS) scalar flux models are essential when large eddy simulation (LES) is used to represent flow, mixing and transport of passive and active scalars in engineering, and environmental applications in turbulent regime. Many SGS scalar flux models have been developed for flows with low Schmidt numbers (Sc), but their application to high Sc flows has important limitations. In high Sc flows, the behavior of the scalar field becomes anisotropic because of intermittency effects, phenomenon that must be accounted for by SGS scalar flux models. The objective of this paper is to evaluate the ability of three SGS scalar flux models to predict the scalar behavior of a high Sc-number flow configuration, namely the anisotropy-resolved SGS scalar flux model: (1) appropriate for high Sc-number flow configurations, and two additional SGS models (linear eddy diffusivity based SGS models) with (2) constant, and (3) dynamically calculated turbulent Schmidt number. The LES simulation results accomplished by these models are compared to each other and to experimental data of a turbulent round jet discharging a diluted scalar into a low-velocity coflowing water stream. The comparison of simulation results and experimental observations shows that, in general, all SGS models reproduce the mean filtered concentration distribution in radial direction. The dynamic eddy diffusivity and anisotropy models reproduce the rms of the concentration and SGS scalar fluxes distribution. In particular, the anisotropy model improves the prediction reliability of LES. However, the three models evaluated in this study cannot accurately predict the scalar behavior at the superviscous layer. Finally, this work demonstrates that complex models can achieve reliable predictions on reasonable grids using less computational effort, while simple models require fine grids with increased computational costs.

References

1.
Sreenivasan
,
K. R.
,
1996
, “
The Passive Scalar Spectrum and the Obukhov–Corrsin Constant
,”
Phys. Fluids.
,
8
(
1
), pp.
189
196
.10.1063/1.868826
2.
Wegner
,
B.
,
Staufer
,
M.
,
Sadiki
,
A.
, and
Janicka
,
J.
,
2007
, “
Study of Flow and Mixing in a Generic GT Combustor Using LES
,”
Flow Turbul. Combust.
,
79
(
4
), pp.
389
403
.10.1007/s10494-007-9105-3
3.
Johansson
,
A. V.
, and
Wikstroem
,
P. M.
,
1999
, “
DNS and Modeling of Passive Scalar Transport in Turbulent Channel Flow With a Focus on Scalar Dissipation Rate Modeling
,”
Flow Turbul. Combust.
,
63
(
3
), pp.
223
245
.10.1023/A:1009948606944
4.
Löffler
,
M.
,
Pfadler
,
S.
,
Beyrau
,
F.
,
Leipertz
,
A.
,
Dinkelacker
,
F.
,
Huai
,
Y.
, and
Sadiki
,
A.
,
2008
, “
Experimental Determination of the Sub-Grid Scale Scalar Flux in a Non-Reacting Jet Flow
,”
Flow Turbul. Combust.
,
81
(
1–2
), pp.
205
219
.10.1007/s10494-007-9102-6
5.
Olbricht
,
C.
,
Hahn
,
F.
,
Sadiki
,
A.
, and
Janicka
,
J.
,
2007
, “
Analysis of Subgrid Scale Mixing Using a Hybrid LES-Monte-Carlo PDF Method
,”
Int. J. Heat Fluid Flow.
28
(
6
), pp.
1215
1226
.10.1016/j.ijheatfluidflow.2007.04.013
6.
Peng
,
S. H.
, and
Davidson
,
L.
,
2002
, “
On a Subgrid-Scale Heat Flux Model for Large Eddy Simulation of Turbulent Thermal Flow
,”
Int. J. Heat Mass Transfer
,
45
(7), pp.
1393
1405
.10.1016/S0017-9310(01)00254-X
7.
Lubbers
,
C. L.
,
Brethouwer
,
G.
, and
Boersma
,
B. J.
,
2001
, “
Simulation of the Mixing of a Passive Scalar in a Round Turbulent Jet
,”
Fluid Dyn. Res.
,
28
(
3
), pp.
189
208
.10.1016/S0169-5983(00)00026-5
8.
Wang
,
Y.
,
Tanahashi
,
M.
, and
Miyauchi
,
T.
,
2007
, “
Coherent Fine Scale Eddies in Turbulence Transition of Spatially Developing Mixing Layer
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1280
1290
.10.1016/j.ijheatfluidflow.2007.06.009
9.
Yeung
,
P. K.
,
Xu
,
S.
,
Donzis
,
D. A.
, and
Sreenivasan
,
K. R.
,
2004
, “
Simulations of Three-Dimensional Turbulent Mixing for Schmidt Numbers of the Order 1000
,”
Flow Turbul. Combust.
,
72
(
2–4
), pp.
333
347
.10.1023/B:APPL.0000044400.66539.78
10.
Donzis
,
D. A.
,
Sreenivasan
,
K. R.
, and
Yeung
,
P. K.
,
2010
, “
The Batchelor Spectrum for Mixing of Passive Scalars in Isotropic Turbulence
,”
Flow Turbul. Combust.
,
85
(
3-4
), pp.
549
566
.10.1007/s10494-010-9271-6
11.
Warhaft
,
Z.
,
2000
, “
Passive Scalars in Turbulent Flows
,”
Ann. Rev. Fluid Mech.
32
, pp.
203
240
.10.1146/annurev.fluid.32.1.203
12.
Dahm
,
W. J. A.
, and
Dimotakis
,
P. E.
,
1990
, “
Mixing at Large Schmidt Number in the Self-Similar Far Field of Turbulent Jets
,”
J. Fluid Mech.
,
217
, pp.
299
330
.10.1017/S0022112090000738
13.
Miller
,
P. L.
, and
Dimotakis
,
P. E.
,
1991
, “
Reynolds Number Dependence of Scalar Fluctuations in a High Schmidt Number Turbulent Jet
,”
Phys. Fluids A
,
3
(
5
), pp.
1156
1163
.10.1063/1.858043
14.
Dimotakis
,
P. E.
,
2005
, “
Turbulent Mixing
,”
Annu. Rev. Fluid Mech.
,
37
, pp.
329
356
.10.1146/annurev.fluid.36.050802.122015
15.
Yeung
,
P. K.
,
Xu
,
S.
, and
Sreenivasan
,
K. R.
,
2002
, “
Schmidt Number Effects on Turbulent Transport With Uniform Mean Scalar Gradient
,”
Phys. Fluids
,
14
(
12
), pp.
4178
4191
.10.1063/1.1517298
16.
Schumacher
,
J.
, and
Sreenivasan
,
K. R.
,
2005
, “
Statistics and Geometry of Passive Scalars in Turbulence
,”
Phys. Fluids
,
17
(12), p.
125107
.10.1063/1.2140024
17.
Schwertfirm
,
F.
, and
Manhart
,
M.
,
2007
, “
DNS of Passive Scalar Transport in Turbulent Channel Flow at High Schmidt Numbers
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1204
1214
.10.1016/j.ijheatfluidflow.2007.05.012
18.
Michioka
,
T.
, and
Komori
,
S.
,
2004
, “
Large-Eddy Simulation of a Turbulent Reacting Liquid Flow
,”
AIChE J.
,
50
(
11
), pp.
2705
2720
.10.1002/aic.10218
19.
Janicka
,
J.
, and
Sadiki
,
A.
,
2005
, “
Large Eddy Simulation of Turbulent Combustion Systems
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
537
547
.10.1016/j.proci.2004.08.279
20.
Eidson
,
T.
,
1985
, “
Numerical Simulation of the Turbulent Rayleigh–Bénard Problem Using Subgrid Modeling
,”
J. Fluid Mech.
,
158
, pp.
245
268
.10.1017/S0022112085002634
21.
Gurniki
,
F.
,
Fukagata
,
K.
,
Zahrai
,
S.
, and
Bark
,
F. H.
,
2000
, “
LES of Turbulent Channel Flow of a Binary Electrolyte
,”
J. Appl. Electrochem.
,
30
(
12
), pp.
1335
1343
.10.1023/A:1026597812518
22.
Safrai
,
A. S.
, and
Tkachenko
,
I. V.
,
2009
, “
Numerical Modeling of Gravity Currents in Inclined Channels
,”
Fluid. Dyn.
,
44
(
1
), pp.
22
30
.10.1134/S0015462809010037
23.
Dong
,
Y. H.
,
Lu
,
X. Y.
, and
Zhuang
,
L. X.
,
2002
, “
An Investigation of the Prandtl Number Effect on Turbulent Heat Transfer in Channel Flows by Large Eddy Simulation
,”
Acta Mech.
,
159
(
1–4
), pp.
39
51
.10.1007/BF01171446
24.
Dong
,
Y. H.
,
Lu
,
X. Y.
, and
Zhuang
,
L. X.
,
2003
, “
Large Eddy Simulation of Turbulent Channel Flow With Mass Transfer at High-Schmidt Numbers
,”
Int. J. Heat Mass Transfer
,
46
(9), pp.
1529
1539
.10.1016/S0017-9310(02)00456-8
25.
Wang
,
L.
, and
Lu
,
X. Y.
,
2005
, “
Large Eddy Simulation of Stably Stratified Turbulent Open Channel Flows With Low- to High-Prandtl Number
,”
Int. J. Heat Mass Transfer
,
48
(10), pp.
1883
1897
.10.1016/j.ijheatmasstransfer.2004.12.017
26.
Wang
,
L.
,
Dong
,
Y. H.
, and
Lu
,
X. Y.
,
2005
, “
An Investigation of Turbulent Open Channel Flow With Heat Transfer by Large Eddy Simulation
,”
Comput. Fluids
,
34
(1), pp.
23
47
.10.1016/j.compfluid.2004.03.004
27.
Huai
,
Y.
,
2005
, “
Large Eddy Simulation in the Scalar Field
,” Ph.D. thesis, Technische Universität Darmstadt, Darmstadt, Germany.
28.
Onishi
,
R.
, and
Komori
,
S.
,
2006
, “
Thermally Stratified Liquid Turbulence With a Chemical Reaction
,”
AIChE J.
52
(
2
), pp.
456
468
.10.1002/aic.10675
29.
Walter
,
M.
,
Kornev
,
N.
,
Zhdanov
,
V.
, and
Hassel
,
E.
,
2009
, “
Turbulent Mixing With Chemical Reaction in a Coaxial Jet Mixer
,”
Proceedings of the Sixth International Symposium on Turbulence, Heat and Mass Transfer 6
, K. Hanjalić et al., eds., Begell House, Rome, Italy.
30.
Tkatchenko
,
I.
,
Kornev
,
N.
,
Jahnke
,
S.
,
Steffen
,
G.
, and
Hasse
,
E.
,
2007
, “
Performances of LES and RANS Models for Simulation of Complex Flows in a Coaxial Jet Mixer
,”
Flow Turbul. Combust.
,
78
(
2
), pp.
111
127
.10.1007/s10494-006-9053-3
31.
Marchisio
,
D. L.
,
2009
, “
Large Eddy Simulation of Mixing and Reaction in a Confined Impinging Jets Reactor
,”
Comput. Chem. Eng.
,
33
(
2
), pp.
408
420
.10.1016/j.compchemeng.2008.11.009
32.
Kurose
,
R.
,
Michioka
,
T.
,
Kohno
,
N. Y.
,
Komori
,
S.
, and
Baba
,
Y.
,
2011
, “
Application of Flamelet Model to Large-Eddy Simulation of Turbulent Reacting Liquid Flows
,”
AIChE J.
,
57
(
4
), pp.
911
917
.10.1002/aic.12328
33.
Hartmann
,
H.
,
Derksen
,
J. J.
,
van den
Akker
, and
H. E. A.
,
2006
, “
Mixing Times in a Turbulent Stirred Tank by Means of LES
,”
AIChE J.
,
52
(
11
), pp.
3696
3706
.10.1002/aic.10997
34.
Hartmann
,
H.
,
Derksen
,
J. J.
,
Montavon
,
C.
,
Pearson
,
J.
,
Hamill
,
I. S.
, and
van den Akker
,
H. E. A.
,
2004
, “
Assessment of Large Eddy and RANS Stirred Tank Simulations by Means of LDA
,”
Chem. Eng. Sci.
,
59
(
12
), pp.
2419
2432
.10.1016/j.ces.2004.01.065
35.
Kang
,
H. S.
, and
Memeveau
,
C.
,
2001
, “
Passive Scalar Anisotropy in a Heated Turbulent Wake: New Observations and Implications for Large-Eddy Simulations
,”
J. Fluid Mech.
,
442
, pp.
161
170
.10.1017/S0022112001005225
36.
Jaberi
,
F. A.
, and
Colucci
,
P. J.
,
2003
, “
Large Eddy Simulation of Heat and Mass Transport in Turbulent Flows. Part 2: Scalar Field
,”
Int. J. Heat Mass Transfer
,
46
(
10
), pp.
1826
1840
.
37.
Porté-Agel
,
F.
,
2004
, “
A Scale-Dependent Dynamic Model for Scalar Transport in Large-Eddy Simulations of the Atmospheric Boundary Layer
,”
Boundary Layer Meteorol.
,
112
(
1
), pp.
81
105
.10.1023/B:BOUN.0000020353.03398.20
38.
Xun
,
Q. Q.
,
Wang
,
B. C.
, and
Yee
,
E.
,
2011
, “
Large-Eddy Simulation of Turbulent Heat Convection in a Spanwise Rotating Channel Flow
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
698
716
.10.1016/j.ijheatmasstransfer.2010.08.018
39.
Bardina
,
J.
,
Ferziger
,
J. H.
, and
Reynolds.
,
W. C.
,
1980
, “
Improved Subgrid Scale Models for Large Eddy Simulation
,”
AIAA
Paper No. 80-1357. 10.2514/61980-1357
40.
Huai
,
Y.
,
Kniesner
,
B.
,
Sadiki
,
A.
, and
Jakirlić
,
S.
,
2007
, “
Large Eddy Simulations of Passive-Scalar Mixing Using a Tensorial Eddy Diffusivity-Based SGS-Modeling
,”
Proceedings of the 11th EUROMECH. European Turbulence Conference
, Advances in Turbulence XI, J. M. L. M. Palma and S. A. Lopes, eds., Porto, Portugal, June 25–28, pp.
630
632
.
41.
Huai
,
Y.
, and
Sadiki
,
A.
,
2007
, “
Large Eddy Simulation of Mixing Processes in Turbulent Liquid Flows With Chemical Reactions
,”
Proceedings of the 5th International Symposium on Turbulence and Shear Flow Phenomena
, R. Friedrich et al., eds., Munich, Germany, pp.
1137
1142
.
42.
Huai
,
Y.
,
Sadiki
,
A.
,
Pfadler
,
S.
,
Loffler
,
M.
,
Beyrau
,
F.
,
Leipertz
,
A.
, and
Dinkelacker
,
F.
,
2006
, “
Experimental Assessment of Scalar Flux Models for Large Eddy Simulations of Non-Reacting Flow
,”
Proceedings of the 5th International Symposium on THMT
, Dubrovnik, Croatia.
43.
Pfadler
,
S.
,
Kerl
,
J.
,
Beyrau
,
F.
,
Leipertz
,
A.
,
Sadiki
,
A.
,
Scheuerlein
,
J.
, and
Dinkelacker
,
F.
,
2009
, “
Direct Evaluation of the Subgrid Scale Scalar Flux in Turbulent Premixed Flames With Conditioned Dual-Plane Stereo PIV
,”
Proc. Combust. Inst.
32
(
2
), pp.
1723
1730
.10.1016/j.proci.2008.05.027
44.
Antoine
,
Y.
,
Lemoine
,
F.
, and
Lebouché
,
M.
,
2001
, “
Turbulent Transport of a Passive Scalar in a Round Jet Discharging Into a Co-Flowing Stream
,”
Eur. J. Mech: B/Fluids.
,
20
(2), pp.
275
301
.10.1016/S0997-7546(00)01120-1
45.
Meneveau
,
C.
, and
Katz
,
J.
,
2000
, “
Scale-Invariance and Turbulent Models for Large Eddy Simulation
,”
Fluid Mech.
,
32
, pp.
1
32
.10.1146/annurev.fluid.32.1.1
46.
Smagorinsky
,
J. S.
,
1963
, “
General Circulation Experiments With the Primitive Equations I. The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
47.
Lilly
,
D.
,
1967
, “
The Representation of Small-Scale Turbulence in Numerical Simulation Experiments
,”
Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences
, Yorktown Heights, New York, pp.
195
210
.
48.
Deardorff
,
J. W.
,
1970
, “
A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers
,”
J. Fluid Mech.
,
41
(2), pp.
453
480
.10.1017/S0022112070000691
49.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids
,
3
(
7
), pp.
1760
1765
.10.1063/1.857955
50.
Lilly
,
D.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids.
,
4
(
3
), pp.
633
635
.10.1063/1.858280
51.
Burton
,
G. C.
,
2005
, “
Large-Eddy Simulation of Passive-Scalar Mixing Using Multifractal Subgrid-Scale Modeling
,” Annual Research Briefs 2005 Center for Turbulence Research, pp.
211
222
.
52.
Durbin
,
P. A.
, and
Patterson
,
R. M.
,
2001
,
Statistical Theory and Modeling for Turbulent Flows
,
Wiley
,
Chichester, UK
.
53.
Sagaut
,
P.
,
2006
,
Large Eddy Simulation for Incompressible Flows: An Introduction
, 3rd ed.,
Springer
,
Berlin, Germany
.
54.
Moin
,
P.
,
Squires
,
K.
,
Cabot
,
W.
, and
Lee
,
S.
,
1991
, “
A Dynamic Subgrid-Scale Model for Compressible Turbulence and Scalar Transport
,”
Phys. Fluids A.
,
3
(
11
), pp.
2746
2757
.10.1063/1.858164
55.
Cabot
,
W.
,
Moin
,
P.
,
1993
, “
Large Eddy Simulation of Scalar Transport With the Dynamic Subgid-Scale Model
,”
Large Eddy Simulation of Complex Engineering and Geophysical Flows
,
B.
Galperin
, and
S. A.
Orszag
, eds.,
Cambridge University Press
,
Cambridge, UK
.
56.
Sadiki
,
A.
,
2005
, “
Extended Thermodynamics as Modeling Tool of Turbulence in Fluid Flows
,”
Trends in Applications of Mathematics to Mechanics
,
Y.
Wang
, and
K.
Hutter
, eds.,
Shaker Verlag
,
Aachen, Germany
, pp.
451
462
.
57.
Pantangi
,
P.
,
Huai
,
Y.
, and
Sadiki
,
A.
,
2010
, “
Mixing Analysis and Optimization in Jet Mixer Systems by Means of Large Eddy Simulation
,”
Micro and Macro Mixing, Analysis, Simulation and Numerical Calculation (Heat and Mass Transfer)
,
H.
Bockhorn
, et al., eds,
Springer
,
Berlin, Germany
, pp.
205
226
.
58.
Gendron
,
P. O.
,
Avaltroni
,
F.
, and
Wilkinson
,
K. J.
,
2008
, “
Diffusion Coefficients of Several Rhodamine Derivatives as Determined by Pulsed Field Gradient-Nuclear Magnetic Resonance and Fluorescence Correlation Spectroscopy
,”
J. Fluoresc.
,
18
(
6
), pp.
1093
1101
.10.1007/s10895-008-0357-7
59.
Stone
,
H.
,
1968
, “
Iterative Solution of Implicit Approximations of Multidimensional Partial Differential Equations
,”
SIAM J. Numer. Anal.
,
5
(
3
), pp.
530
558
.10.1137/0705044
60.
Leister
,
H.
, and
Péric
,
M.
,
1994
, “
Vectorized Strongly Implicit Solving Procedure for Seven Diagonal Coefficient Matrix
,”
Int. J. Numer. Methods Heat Fluid Flow
,
4
(
2
), pp.
159
172
.10.1108/EUM0000000004106
61.
Durst
,
F.
, and
Schäfer
,
M.
,
1996
, “
A Parallel Blockstructured Multigrid Method for the Prediction of Incompressible Flow
,”
Int. J. Numer. Methods Fluids
,
22
(
6
), pp.
549
565
.10.1002/(SICI)1097-0363(19960330)22:6<549::AID-FLD366>3.0.CO;2-7
62.
Mi
,
J.
,
Nobes
,
D. S.
, and
Nathan
,
G. J.
,
2001
, “
Influence of Jet Exit Conditions on the Passive Scalar Field of an Axisymmetric Free Jet
,”
J. Fluid Mech.
,
432
, pp.
91
125
.
63.
Boersma
,
B. J.
,
Brethouwer
,
G.
, and
Nieuwstadt
,
F. T. M.
,
1998
, “
A Numerical Investigation on the Effect of the Inflow Conditions on the Self-Similar Region of a Round Jet
,”
Phys. Fluids.
,
10
(4), pp.
899
909
.10.1063/1.869626
64.
Bogey
,
C.
, and
Bailly
,
C.
,
2009
, “
Turbulence and Energy Budget in a Self-Preserving Round Jet: Direct Evaluation Using Large Eddy Simulation
,”
J. Fluid Mech.
,
627
, pp.
129
160
.10.1017/S0022112009005801
65.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
(
1
), pp.
69
94
.10.1017/S0022112095000462
66.
List
,
E. J.
,
1982
, “
Turbulent Jets and Plumes
,”
Annu. Rev. Fluid Mech.
14
, pp.
189
212
.10.1146/annurev.fl.14.010182.001201
67.
Celik
,
I. B.
,
Cehreli
,
Z. N.
, and
Yavuz
,
I.
,
2005
, “
Index of Resolution Quality for Large Eddy Simulations
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
949
958
.10.1115/1.1990201
68.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
1998
, “
Coherent Structures
,”
The Handbook of Fluid Dynamics
,
R. W.
Johnson
, eds.,
CRC Press
,
Boca Raton, FL
, pp.
13.40
13.48
.
69.
Bridges
,
J. E.
, and
Hussain
,
A. K. M. F.
,
1987
, “
Roles of Initial Condition and Vortex Pairing in Jet Noise
,”
J. Sound Vib.
,
117
(
2
), pp.
289
311
.10.1016/0022-460X(87)90540-2
70.
Nathan
,
G. J.
,
Mi
,
J.
,
Alwahabi
,
Z. T.
,
Newbold
,
G. J. R.
, and
Nobes
,
D. S.
,
2006
, “
Impacts of a Jet's Exit Flow Pattern on Mixing and Combustion Performance
,”
Prog. Energy Combust. Sci.
,
32
(
5–6
), pp.
496
538
.10.1016/j.pecs.2006.07.002
71.
Dowling
,
D. R.
, and
Dimotakis
,
P. E.
,
1990
, “
Similarity on the Concentration Field of Gas-Phase Turbulent Jets
,”
J. Fluid Mech.
,
218
, pp.
109
141
.10.1017/S0022112090000945
72.
Somandepalli
,
V. S. R.
, and
Mungal
,
M. G.
,
2006
, “
Combined PIV and PLIF Measurements in a Polymer Drag Reduced Turbulent Boundary Layer
,” Grant No. MDA972-01-C-0041 (Advanced Technology Office of the Defense Advanced Research Projects Agency (DARPA)). Thermosciences Division, Stanford University, Stanford, CA, Report No. TSD-169.
73.
Westerweel
,
J.
,
Fukushima
,
C.
,
Pedersen
,
J. M.
, and
Hunt
,
J. C. R.
,
2009
, “
Momentum and Scalar Transport at the Turbulent/Non-Turbulent Interface of a Jet
,”
J. Fluid Mech.
,
631
, pp.
199
230
.10.1017/S0022112009006600
74.
Dahm
,
W. J. A.
,
1985
, “
Experiments on Entrainment, Mixing and Reaction in Turbulent Jets at Large Schmidt number
,” Ph.D. thesis, California Institute of Technology, Pasadena, CA.
You do not currently have access to this content.