This paper highlights the influence of contact line (pinning) forces on the mobility of dry bubbles in microchannels. Bubbles moving at velocities less than the dewetting velocity of liquid on the surface are essentially dry, meaning that there is no thin liquid film around the bubbles. For these “dry” bubbles, contact line forces and a possible capillary pressure gradient induced by pinning act on the bubbles and resist motion. Without sufficient driving force (e.g., external pressure), a dry bubble is brought to stagnation. For the first time, a bipartite theoretical model that estimates the required pressure difference across the length of stagnant bubbles with concave and convex back interfaces to overcome the contact line forces and stimulate motion is proposed. To validate our theory, the pressure required to move a single dry bubble in square microchannels exhibiting contact angle hysteresis has been measured. The working fluid was de-ionized water. The experiments have been conducted on coated glass channels with different surface hydrophilicities that resulted in concave and convex back interfaces for the bubbles. The experimental results were in agreement with the model's predictions for square channels. The predictions of the concave and convex back models were within 19% and 27% of the experimental measurements, respectively.

References

References
1.
Metz
,
T.
,
Paust
,
N.
,
Zengerle
,
R.
, and
Koltay
,
P.
,
2010
, “
Capillary Driven Movement of Gas Bubbles in Tapered Structures
,”
Microfluid. Nanofluid.
,
9
(
2–3
), pp.
341
355
.10.1007/s10404-009-0551-1
2.
Kohnle
,
J.
,
Waibel
,
G.
,
Cernosa
,
R.
,
Storz
,
M.
,
Ernst
,
H.
,
Sandmaier
,
H.
,
Strobelt
,
T.
, and
Zengerle
,
R.
, “
A Unique Solution for Preventing Clogging of Flow Channels by Gas Bubbles
,”
Proceedings of the 15th IEEE International Conference on Micro Electro Mechanical Systems
,
IEEE
MEMS, Las Vegas, NV, Jan. 20–24, pp.
77
80
.10.1109/MEMSYS.2002.984094
3.
Litterst
,
C.
,
Eccarius
,
S.
,
Hebling
,
C.
,
Zengerle
,
R.
, and
Koltay
,
P.
,
2006
, “
Increasing μDMFC Efficiency by Passive CO2 Bubble Removal and Discontinuous Operation
,”
J. Micromech. Microeng.
,
16
(
9
), pp.
S248
S253
.10.1088/0960-1317/16/9/S12
4.
Kandlikar
,
S.
, and
Balasubramanian
,
P.
,
2003
, “
Effect of Channel Shape on Flow Pattern During Flow Boiling in Single and Parallel Rectangular Microchannels
,”
Proceedings of the 5th International Conference on Boiling Heat Transfer
,
Montego Bay, Jamaica
, May 4–8.
5.
Kenny
,
T. W.
,
Goodson
,
K. E.
,
Santiago
,
J. G.
,
Wang
,
E.
,
Koo
,
J.-M. O.
,
Jiang
,
L.
,
Pop
,
E.
,
Sinha
,
S.
,
Zhang
,
L.
,
Fogg
,
D.
,
Yao
,
S.
,
Flynn
,
R.
,
Chang
,
C.-H.
, and
Hidrovo
,
C. H.
,
2006
, “
Advanced Cooling Technologies for Microprocessors
,”
Int. J. High Speed Electron. Syst.
,
16
(1), pp.
301
313
.10.1142/S0129156406003655
6.
Kuo
,
C. Y.
, and
Pan
,
C.
,
2009
, “
The Effect of Cross-Section Design of Rectangular Microchannels on Convective Steam Condensation
,”
J. Micromech. Microeng.
,
19
(
3
), p.
035017
.10.1088/0960-1317/19/3/035017
7.
Chen
,
T.
, and
Garimella
,
S. V.
,
2011
, “
A Study of Critical Heat Flux During Flow Boiling in Microchannel Heat Sinks
,”
ASME J. Heat Transfer
,
134
(
1
), p.
011504
.10.1115/1.4004715
8.
Mukherjee
,
S.
, and
Mudawar
,
I.
,
2003
, “
Smart Pumpless Loop for Micro-Channel Electronic Cooling Using Flat and Enhanced Surfaces
,”
IEEE Trans. Compon. Packag. Technol.
,
26
(
1
), pp.
99
109
.10.1109/TCAPT.2003.811478
9.
Litterst
,
C.
,
Metz
,
T.
,
Zengerle
,
R.
, and
Koltay
,
P.
,
2008
, “
Static and Dynamic Behaviour of Gas Bubbles in T-Shaped Non-Clogging Micro-Channels
,”
Microfluid. Nanofluid.
,
5
(
6
), pp.
775
784
.10.1007/s10404-008-0279-3
10.
Hibara
,
A.
,
Iwayama
,
S.
,
Matsuoka
,
S.
,
Ueno
,
M.
,
Kikutani
,
Y.
,
Tokeshi
,
M.
, and
Kitamori
,
T.
,
2004
, “
Surface Modification Method of Microchannels for Gas−Liquid Two-Phase Flow in Microchips
,”
Anal. Chem.
,
77
(
3
), pp.
943
947
.10.1021/ac0490088
11.
Zhu
,
X.
,
2009
, “
Micro/Nanoporous Membrane Based Gas–Water Separation in Microchannel
,”
Microsyst. Technol.
,
15
(
9
), pp.
1459
1465
.10.1007/s00542-009-0903-5
12.
Xu
,
J.
,
Vaillant
,
R.
, and
Attinger
,
D.
,
2010
, “
Use of a Porous Membrane for Gas Bubble Removal in Microfluidic Channels: Physical Mechanisms and Design Criteria
,”
Microfluid. Nanofluid.
,
9
(
4–5
), pp.
765
772
.10.1007/s10404-010-0592-5
13.
Wong
,
C. W.
,
Zhao
,
T. S.
,
Ye
,
Q.
, and
Liu
,
J. G.
,
2005
, “
Transient Capillary Blocking in the Flow Field of a Micro-DMFC and Its Effect on Cell Performance
,”
J. Electrochem. Soc.
,
152
(
8
), p.
A1600
.10.1149/1.1949067
14.
Rapolu
,
P.
, and
Son
,
S. Y.
,
2011
, “
Characterization of Wettability Effects on Pressure Drop of Two-Phase Flow in Microchannel
,”
Exp. Fluids
,
51
(
4
), pp.
1101
1108
.10.1007/s00348-011-1129-8
15.
Paust
,
N.
,
Krumbholz
,
S.
,
Munt
,
S.
,
Müller
,
C.
,
Koltay
,
P.
,
Zengerle
,
R.
, and
Ziegler
,
C.
,
2009
, “
Self-Regulating Passive Fuel Supply for Small Direct Methanol Fuel Cells Operating in All Orientations
,”
J. Power Sources
,
192
(
2
), pp.
442
450
.10.1016/j.jpowsour.2009.03.030
16.
Gravesen
,
P.
,
Branebjerg
,
J.
, and
Jensen
,
O. S.
,
1993
, “
Microfluidics—A Review
,”
J. Micromech. Microeng.
,
3
(
4
), pp.
168
182
.10.1088/0960-1317/3/4/002
17.
Hutzenlaub
,
T.
,
Paust
,
N.
,
Zengerle
,
R.
, and
Ziegler
,
C.
,
2011
, “
The Effect of Wetting Properties on Bubble Dynamics and Fuel Distribution in the Flow Field of Direct Methanol Fuel Cells
,”
J. Power Sources
,
196
(
19
), pp.
8048
8056
.10.1016/j.jpowsour.2011.05.070
18.
Blackmore
,
B.
,
Li
,
D.
, and
Gao
,
J.
,
2001
, “
Detachment of Bubbles in Slit Microchannels by Shearing Flow
,”
J. Colloid Interface Sci.
,
241
(
2
), pp.
514
520
.10.1006/jcis.2001.7755
19.
de Gennes
,
P. G.
,
Brochard-Wyart
,
F.
, and
Quéré
,
D.
,
2004
,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
,
Springer
,
New York
, pp.
153
174
.
20.
Redon
,
C.
,
Brochard-Wyart
,
F.
, and
Rondelez
,
F.
,
1991
, “
Dynamics of Dewetting
,”
Phys. Rev. Lett.
,
66
(
6
), pp.
715
718
.10.1103/PhysRevLett.66.715
21.
Cubaud
,
T.
, and
Ho
,
C. M.
,
2004
, “
Transport of Bubbles in Square Microchannels
,”
Phys. Fluids
,
16
(
12
), pp.
4575
4585
.10.1063/1.1813871
22.
Ajaev
, V
. S.
, and
Homsy
,
G. M.
,
2005
, “
Modeling Shapes and Dynamics of Confined Bubbles
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
277
307
.10.1146/annurev.fluid.38.050304.092033
23.
Wong
,
H.
,
Morris
,
S.
, and
Radke
,
C. J.
,
1992
, “
Three-Dimensional Menisci in Polygonal Capillaries
,”
J. Colloid Interface Sci.
,
148
(
2
), pp.
317
336
.10.1016/0021-9797(92)90171-H
24.
Berthier
,
J.
,
Loe-Mie
,
F.
,
Tran
,
V. M.
,
Schoumacker
,
S.
,
Mittler
,
F.
,
Marchand
,
G.
, and
Sarrut
,
N.
,
2009
, “
On the Pinning of Interfaces on Micropillar Edges
,”
J. Colloid Interface Sci.
,
338
(
1
), pp.
296
303
.10.1016/j.jcis.2009.06.007
25.
Cho
,
H.
,
Kim
,
H. Y.
,
Kang
,
J. Y.
, and
Kim
,
T. S.
,
2007
, “
How the Capillary Burst Microvalve Works
,”
J. Colloid Interface Sci.
,
306
(
2
), pp.
379
385
.10.1016/j.jcis.2006.10.077
26.
Jensen
,
M. J.
,
Goranovi
,
G.
, and
Bruus
,
H.
,
2004
, “
The Clogging Pressure of Bubbles in Hydrophilic Microchannel Contractions
,”
J. Micromech. Microeng.
,
14
(
7
), pp.
876
883
.10.1088/0960-1317/14/7/006
27.
Paust
,
N.
,
Litterst
,
C.
,
Metz
,
T.
,
Eck
,
M.
,
Ziegler
,
C.
,
Zengerle
,
R.
, and
Koltay
,
P.
,
2009
, “
Capillary-Driven Pumping for Passive Degassing and Fuel Supply in Direct Methanol Fuel Cells
,”
Microfluid. Nanofluid.
,
7
(
4
), pp.
531
543
.10.1007/s10404-009-0414-9
28.
Jensen
,
M. J.
,
2002
, “
Bubbles in Microchannels
,” M.Sc. dissertation, Technical University of Denmark, Lyngby.
29.
Chang
,
H.-C.
,
2001
, “
Bubble/Drop Transport in Microchannels
,”
The MEMS Handbook
,
CRC Press
, Boca Raton, FL.10.1201/9781420050905.ch11
30.
Kim
,
H.-Y.
,
Lee
,
H. J.
, and
Kang
,
B. H.
,
2002
, “
Sliding of Liquid Drops Down an Inclined Solid Surface
,”
J. Colloid Interface Sci.
,
247
(
2
), pp.
372
380
.10.1006/jcis.2001.8156
31.
Miyama
,
M.
,
Yang
,
Y.
,
Yasuda
,
T.
,
Okuno
,
T.
, and
Yasuda
,
H. K.
,
1997
, “
Static and Dynamic Contact Angles of Water on Polymeric Surfaces
,”
Langmuir
,
13
(
20
), pp.
5494
5503
.10.1021/la960870n
32.
Della Volpe
,
C.
,
Maniglio
,
D.
,
Siboni
,
S.
, and
Morra
,
M.
,
2001
, “
An Experimental Procedure to Obtain the Equilibrium Contact Angle From the Wilhelmy Method
,”
Oil Gas Sci. Technol. Rev. IFP
,
56
(
1
), pp.
9
22
.10.2516/ogst:2001002
33.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(1), pp.
3
8
.
You do not currently have access to this content.