The effect of a radial temperature gradient on the stability of Dean flow of an electrically conducting fluid in an annular channel is investigated. A strong constant magnetic field is imposed in the axial direction. Finite-difference method is used to solve the eigenvalue problem. For given values of gap width d, between the cylinders, and magnetic parameter Q, electrically nonconducting (NC) walls are found to be more destabilizing than perfectly conducting (PC) walls when the temperature parameter N < 0. This trend persists even for small positive values of N but when N (>0) exceeds a critical value depending on Q, PC walls are slightly more destabilizing than NC walls. The critical value of the radii ratio η (0 < η < 1) beyond which the first unstable mode becomes nonaxisymmetric is determined for various values of N and Q.

References

References
1.
Couette
,
M.
,
1890
, “Studies Relating to the Motion of Liquids,”
Ann. Chim. Phys.
,
21
(6), pp.
433
510
.
2.
Taylor
,
G. I.
,
1923
, “
Stability of a Viscous Liquid Contained Between Two Rotating Cylinders
,”
Proc. R. Soc. London A
,
223
, pp.
289
343
.
3.
Dean
,
W. R.
,
1928
, “
Fluid Motion in a Curved Channel
,”
Proc. R. Soc. London A
,
121
(
787
), pp.
402
420
.10.1098/rspa.1928.0205
4.
Reid
,
W. H.
,
1958
, “
On the Stability of Viscous Flow in a Curved Channel
,”
Proc. R. Soc. London A
,
244
(
1237
), pp.
186
198
.10.1098/rspa.1958.0035
5.
Hammerlin
,
G.
,
1958
, “
Die stabilitat der stromung in einem Gekrummten Kanel
,”
Arch. Ration. Mech. Anal.
,
1
(
1
), pp.
212
224
.10.1007/BF00298005
6.
Walowit
,
J.
,
Tsao
,
S.
, and
DiPrima
,
R. C.
,
1964
, “
Stability of Flow Between Arbitrarily Spaced Concentric Cylindrical Surfaces Including the Effect of a Radial Temperature Gradient
,”
ASME J. Appl. Mech.
,
31
(
4
), pp.
585
593
.10.1115/1.3629718
7.
Gibson
,
R. D.
, and
Cook
,
A. E.
,
1974
, “
The Stability of Curved Channel Flow
,”
Quart. J. Mech. Appl. Math.
,
27
(
2
), pp.
149
160
.10.1093/qjmam/27.2.149
8.
Deka
,
R. K.
, and
Takhar
,
H. S.
,
2004
, “
Hydrodynamic Stability of Viscous Flow Between Curved Porous Channel With Radial Flow
,”
Int. J. Eng. Sci.
42
(
10
), pp.
953
966
.10.1016/j.ijengsci.2003.11.005
9.
Chandrasekhar
,
S.
,
1954
, “
The Stability of Flow Between Rotating Cylinders in the Presence of a Radial Temperature Gradient
,”
J. Ration. Mech. Anal.
,
3
, pp.
181
207
.
10.
Harris
,
D. L.
, and
Reid
,
W. H.
,
1964
, “
On the Stability of Viscous Flow Between Rotating Cylinders, 2. Numerical Analysis
,”
J. Fluid Mech.
,
20
, pp.
95
101
.10.1017/S0022112064001033
11.
Bahl
,
S. K.
,
1972
, “
The Effect of Radial Temperature Gradient on the Stability of Viscous Flow Between Two Rotating Coaxial Cylinders
,”
ASME J. Appl. Mech.
,
39
(
2
), pp.
593
595
.10.1115/1.3422723
12.
Min
,
K.
, and
Lueptow
,
R. M.
,
1994
, “
Hydrodynamic Stability of Viscous Flow Between Rotating Porous Cylinders With Radial Flow
,”
Phys. Fluids
,
6
(9), pp.
144
151
.10.1063/1.868077
13.
Becker
,
K. M.
, and
Kaye
,
J.
,
1962
, “
Measurements of Diabatic Flow in an Annulus With an Inner Rotating Cylinder
,”
ASME J. Heat Transfer
,
84
, pp.
97
105
.10.1115/1.3684335
14.
Soundalgekar
,
V. M.
,
Takhar
,
H. S.
, and
Smith
,
T. J.
,
1981
, “
Effects of Radial Temperature Gradient on the Stability of Viscous Flow in an Annulus With Rotating Inner Cylinder
,”
Warme stoffubertragung
,
15
(
4
), pp.
233
238
.10.1007/BF01003643
15.
Lee
,
Y. N.
, and
Minkowycz
,
W. J.
,
1989
, “
Heat Transfer Characteristics of the Annulus of Two Coaxial Cylinders With One Cylinder Rotating
,”
Int. J. Heat Mass Transfer
,
32
(
4
), pp.
711
722
.10.1016/0017-9310(89)90218-4
16.
Mutabazi
,
I.
, and
Bahloul
,
A.
,
2002
, “
Stability Analysis of a Vertical Curved Channel Flow With a Radial Temperature Gradient
,”
Theor. Comput. Fluid Dyn.
,
16
, pp.
79
90
.10.1007/s00162-002-0069-6
17.
Chandrasekhar
,
S.
,
1961
,
Hydrodynamic and Hydromagnetic Stability
,
Clarendon Press
,
Oxford, UK
.
18.
Donnelly
,
R. J.
, and
Ozima
,
M.
,
1962
, “
Experiments on the Stability of Flow Between Rotating Cylinders in the Presence of a Magnetic Field
,”
Proc. R. Soc. London A
,
226
, pp.
272
286
.10.1098/rspa.1962.0061
19.
Donnelly
,
R. J.
, and
Caldwell
,
D. R.
,
1963
, “
Experiments on the Stability of Hydromagnetic Couette Flow
,”
J. Fluid Mech.
19
, pp.
257
263
.10.1017/S0022112064000696
20.
Roberts
,
P. H.
,
1964
, “
The Stability of Hydromagnetic Couette Flow
,”
Proc. Cambridge Philos. Soc.
,
60
, pp.
635
651
.10.1017/S030500410003766X
21.
Hollerbach
,
R.
, and
Skinner
,
S.
,
2001
, “
Instabilities of Magnetically Induced Shear Layers and Jets
,”
Proc. R. Soc. London A
,
457
, pp.
785
802
.10.1098/rspa.2000.0692
22.
Mahapatra
,
T. R.
,
Dholey
,
S.
, and
Gupta
,
A. S.
,
2009
, “
Stability of Hydromagnetic Dean Flow Between Two Arbitrarily Spaced Concentric Circular Cylinders in the Presence of a Uniform Axial Magnetic Field
,”
Phys. Lett. A.
,
373
(
47
), pp.
4338
4345
.10.1016/j.physleta.2009.09.058
23.
Zhao
,
Y.
,
Zikanov
,
O.
, and
Krasnov
,
D.
,
2011
, “
Instability of Magnetohydrodynamic Flow in an Annular Channel at High Hartmann Number
,”
Phys. Fluids
,
23
, p.
084103
.10.1063/1.3622775
24.
Zhao
,
Y.
, and
Zikanov
,
O.
,
2012
, “
Instabilities and Turbulence in Magnetohydrodynamic Flow in a Toroidal Duct Prior to Transition in Hartmann Layers
,”
J. Fluid Mech.
,
692
, pp.
288
316
.10.1017/jfm.2011.513
25.
Ali
,
M. A.
,
Takhar
,
H. S.
, and
Soundalgekar
,
V. M.
,
1998
, “
Effect of Radial Temperature Gradient on the Stability of Flow in a Curved Channel
,”
Proc. R. Soc. London A
,
454
, pp.
2279
2287
.10.1098/rspa.1998.0259
26.
Deka
,
R. K.
,
Gupta
,
A. S.
, and
Das
,
S. K.
,
2007
, “
Stability of Viscous Flow Driven by an Azimuthal Pressure Gradient Between Two Porous Concentric Cylinders With Radial Flow and a Radial Temperature Gradient
,”
Acta Mech.
,
189
(
1–4
), pp.
73
86
.10.1007/s00707-006-0399-3
27.
Mutabazi
,
I.
,
Goharzadeh
,
A.
, and
Dumouchel
,
F.
,
2001
, “
The Circular Couette Flow With a Radial Temperature Gradient
,”
12th International Couette–Taylor Workshop
,
Evanston, IL
, Sept. 6–8.
28.
Davidson
,
P. A.
,
2001
, “
Magnetohydrodynamics in Material Processing
,”
Annu. Rev. Fluid Mech.
,
31
, pp.
273
300
.10.1146/annurev.fluid.31.1.273
29.
Smolentsev
,
S.
,
Moreau
,
R.
, and
Abdou
,
M.
,
2008
, “
Characterization of Key Magnetohydrodynamic Phenomena for PbLi Flows of the US DCLL Blanket
,”
Fusion Eng. Des.
,
83
, pp.
771
783
.10.1016/j.fusengdes.2008.07.023
30.
Lin
,
C. C.
,
1995
,
The Theory of Hydrodynamic Stability
,
Cambridge University Press
,
Cambridge, UK
.
31.
Cowling
,
T. G.
,
1957
,
Magnetohydrodynamics
,
Interscience Publishers
,
New York
.
32.
Deka
,
R. K.
, and
Gupta
,
A. S.
,
2007
, “
Stability of Taylor–Couette Magnetoconvection With Radial Temperature Gradient and Constant Heat Flux at the Outer Cylinder
,”
ASME J. Fluids Eng.
,
129
(
3
), pp.
302
310
.10.1115/1.2427080
You do not currently have access to this content.