In recent years, lattice Boltzmann methods (LBMs) have become popular for solving fluid flow problems of engineering interest. Reasons for this popularity are due to the advantages of this method, which are, for example, the simplicity to handle complex geometries and the high efficiency in calculating transient flows. For the operational reliability and efficiency of pumps and pump systems, the incoming flow conditions are crucial. Since the efficiency and reliability requirements of pumps are rising and must be guaranteed by the pump and plant manufacturer, the flow conditions in pump intakes need to be evaluated during plant design. Recent trends show that pump intakes are built more and more compact, what makes the flow in the intake even more complex and holds a higher risk for unacceptable pump inflow conditions. In this contribution, a numerical scheme for the simulation of pump intake flows based on a lattice Boltzmann-large eddy simulation (LES) approach is presented and the ability of the method to capture the flow phenomena in intake flows is analyzed. Special attention is turned to the potential of the numerical scheme to reproduce the transient vortex behavior of intake flows, which results in a very complex flow structure and is challenging to model numerically.

References

References
1.
Hecker
,
G.
,
1987
, “
Swirling Flow Problems at Intakes,” IAHR Design Manual
,
CRC Press
,
Boca Raton, FL
.
2.
Kirst
,
K.
, and
Hellmann
,
D.-H.
,
2010
, “
Optimization of Approach Flow Conditions of Vertical Pumping Systems by Computational Analysis and Physical Model Investigation
,”
ASME 2010 3rd Joint U.S.-European Fluids Engineering Summer Meeting Collocated with 8th International Conference on Nanochannels
, Microchannels, and Minichannels, Montreal, QC, Canada, Aug. 1–5, pp.
249
258
.
3.
Constantinescu
,
G.
, and
Patel
,
V.
,
1998
, “
Numerical Model for Simulation of Pump-Intake Flow and Vortices
,”
J. Hydraul. Eng.
,
124
(
2
), pp.
123
134
.10.1061/(ASCE)0733-9429(1998)124:2(123)
4.
ANSI
,
1998
, “
American National Standard for Intake Design for Rotodynamic Pumps
,” Paper No. ANSI/HI 9.8.
5.
Prosser
,
M.
,
1977
,
The Hydraulic Design of Pump Sumps and Intakes
,
British Hydromechanics Research Association
,
London, UK
.
6.
Padmanabhan
,
M.
,
1987
, “
Swirling Flow Problems at Intakes,” IAHR Design Manual
,
CRC Press
,
Boca Raton, FL
.
7.
Tagomori
,
M.
, and
Gotoch
,
M.
,
1989
, “
Flow Patterns and Vortices in Pump-Sumps
,”
Proceedings of the International Symposium on Large Hydraulic Machinery
,
China Press
,
Beijing, China
, May 28–31, pp.
13
22
.
8.
Constantinescu
,
G.
, and
Patel
,
V.
,
2000
, “
Role of Turbulence Model in Prediction of Pump-Bay Vortices
,”
J. Hydraul. Eng.
,
126
(
5
), pp.
387
391
.10.1061/(ASCE)0733-9429(2000)126:5(387)
9.
Tang
,
X. L.
,
Wang
,
F. J.
,
Li
,
Y. J.
,
Cong
,
G. H.
,
Shi
,
X. Y.
,
Wu
,
Y. L.
, and
Qi
,
L. Y.
,
2011
, “
Numerical Investigations of Vortex Flows and Vortex Suppression Schemes in a Large Pumping-Station Sump
,”
Proc. Inst. Mech. Eng., Part C
,
225
(
6
), pp.
1459
1480
.10.1177/2041298310393447
10.
Okamura
,
T.
,
Kamemoto
,
K.
, and
Matsui
,
J.
,
2007
, “
CFD Prediction and Model Experiment on Suction Vortices in Pump Sump
,”
Proceedings of the 9th Asian International Conference on Fluid Machinery
, Jeju, Korea, Oct. 16–19, Paper No. AICFM9-053.
11.
Lucino
,
C.
, and
Gonzalo Dur
,
S.
,
2010
, “
Vortex Detection in Pump Sumps by Means of CFD
,”
XXIV Latin American Congress on Hydraulics
, Punta Del Este, Uruguay, Nov. 21–25.
12.
Tokyay
,
T.
, and
Constantinescu
,
S.
,
2006
, “
Validation of a Large-Eddy Simulation Model to Simulate Flow in Pump Intakes of Realistic Geometry
,”
J. Hydraul. Eng.
,
132
(
12
), pp.
1303
1315
.10.1061/(ASCE)0733-9429(2006)132:12(1303)
13.
Succi
,
S.
,
2001
,
The Lattice Boltzmann Equation: for Fluid Dynamics and Beyond
,
Oxford University
,
Oxford, UK
.
14.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
,
1954
, “
A Model for Collison Processes in Gases
,”
Phys. Rev.
,
94
(
3
), pp.
511
525
.10.1103/PhysRev.94.511
15.
d'Humières
,
D.
,
Ginzburg
,
I.
,
Krafczyk
,
M.
,
Lallemand
,
P.
, and
Luo
,
L.-S.
,
2002
, “
Multiple-Relaxation-Time Lattice Boltzmann Models in Three Dimensions
,”
Philos. Trans. R. Soc. Lond. Ser. A
,
360
(
1792
), pp.
437
451
.10.1098/rsta.2001.0955
16.
Teixeira
,
C. M.
,
1998
, “
Incorporating Turbulence Models Into the Lattice-Boltzmann Method
,”
Int. J. Mod. Phys. C
,
9
(
8
), pp.
1159
1175
.10.1142/S0129183198001060
17.
Hou
,
S.
,
Sterling
,
J.
,
Chen
,
S.
, and
Doolen
,
G.
,
1996
, “
A Lattice Boltzmann Subgrid Model for High Reynolds Number Flows
,” Pattern Formation and Lattice Gas Automata, Providence, RI, pp.
151
166
.
18.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
19.
Marié
,
S.
,
Ricot
,
D.
, and
Sagaut
,
P.
,
2009
, “
Comparison Between Lattice Boltzmann Method and Navier–Stokes High Order Schemes for Computational Aeroacoustics
,”
J. Comput. Phys.
,
228
(
4
), pp.
1056
1070
.10.1016/j.jcp.2008.10.021
20.
Bouzidi
,
M.
,
Firdaouss
,
M.
, and
Lallemand
,
P.
,
2001
, “
Momentum Transfer of a Boltzmann-Lattice Fluid With Boundaries
,”
Phys. Fluids
,
13
(
11
), pp.
3452
3459
.10.1063/1.1399290
21.
Mei
,
R.
,
Luo
,
L.-S.
, and
Shyy
,
W.
,
1999
, “
An Accurate Curved Boundary Treatment in the Lattice Boltzmann Method
,”
J. Comput. Phys.
,
155
(
2
), pp.
307
330
.10.1006/jcph.1999.6334
22.
Guo
,
Z.
,
Zheng
,
C.
, and
Baochang
,
S.
,
2002
, “
Discrete Lattice Effects on the Forcing Term in the Lattice Boltzmann Method
,”
Phys. Rev. E
,
65
(
4
), p.
046308
.10.1103/PhysRevE.65.046308
23.
Guo
,
Z.
,
Zheng
,
C.
, and
Shi
,
B.
,
2008
, “
Lattice Boltzmann Equation With Multiple Effective Relaxation Times for Gaseous Microscale Flow
,”
Phys. Rev. E
,
77
(
3
), p.
036707
.10.1103/PhysRevE.77.036707
24.
Conrad
,
D.
,
Schneider
,
A.
, and
Böhle
,
M.
,
2013
, “
Numerical Investigation of an Extended Propeller Viscosimeter by Means of Lattice Boltzmann Methods
,”
ASME
Paper No. FEDSM2013-16361.10.1115/FEDSM2013-16361
25.
Jiménez
,
J.
, and
Moin
,
P.
,
1991
, “
The Minimal Flow Unit in Near-Wall Turbulence
,”
J. Fluid Mech.
,
225
, pp.
213
240
.10.1017/S0022112091002033
26.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
,
1987
, “
Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
177
, pp.
133
166
.10.1017/S0022112087000892
27.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
,
1999
, “
Direct Numerical Simulation of Turbulent Channel Flow up to Reτ = 590
,”
Phys. Fluids
,
11
(
4
), pp.
943
945
.10.1063/1.869966
28.
Piomelli
,
U.
,
1993
, “
High Reynolds Number Calculations Using the Dynamic Subgrid-Scale Stress Model
,”
Phys. Fluids A
,
5
(
6
), pp.
1484
1490
.10.1063/1.858586
29.
Premnath
,
K. N.
,
Pattison
,
M. J.
, and
Banerjee
,
S.
,
2009
, “
Dynamic Subgrid Scale Modeling of Turbulent Flows Using Lattice-Boltzmann Method
,”
Physica A
,
388
(
13
), pp.
2640
2658
.10.1016/j.physa.2009.02.041
30.
Jarrin
,
N.
,
Benhamadouche
,
S.
,
Laurence
,
D.
, and
Prosser
,
R.
,
2006
, “
A Synthetic-Eddy-Method for Generating Inflow Conditions for Large-Eddy Simulations
,”
Int. J. Heat Fluid Flow
,
27
(
4
), pp.
585
593
.10.1016/j.ijheatfluidflow.2006.02.006
31.
Ansar
,
M.
,
Nakato
,
T.
, and
Constantinescu
,
G.
,
2002
, “
Numerical Simulations of Inviscid Three-Dimensional Flows at Single- and Dual-Pump Intakes
,”
J. Hydraul. Res.
,
40
(
4
), pp.
461
470
.10.1080/00221680209499888
32.
Gant
,
S. E.
,
2010
, “
Reliability Issues of LES-Related Approaches in an Industrial Context
,”
Flow, Turbul. Combust.
,
84
(
2
), pp.
325
335
.10.1007/s10494-009-9237-8
33.
Lesieur
,
M.
,
2008
,
Turbulence in Fluids
, Vol.
84
,
Springer
,
Dordrecht, The Netherlands
.
You do not currently have access to this content.