A currently unexplored mechanical application of nanowires is near-wall active flow manipulation, with potential uses mixing and filtering chemicals, enhancing convective heat transfer, and reducing drag. Here, we present experimental evidence that it is possible to introduce persistent perturbations into turbulent flow with active nanowires. A nanowire array was fabricated and installed in the bounding wall of a turbulent channel flow, and the array was oscillated by external actuation. Measurements indicated that the array increased turbulent kinetic energy throughout the entire wall layer. These findings suggest that dynamically actuated nanowires can potentially be used to implement near-wall flow control.
Issue Section:
Technical Brief
References
1.
Chan
, C. K.
, Peng
, H.
, Liu
, G.
, McIlwrath
, K.
, Zhang
, X. F.
, Huggins
, R. A.
, and Cui
, Y.
, 2008
, “High-Performance Lithium Battery Anodes Using Silicon Nanowires
,” Nat. Nanotechnol.
, 3
, pp. 31
–35
.10.1038/nnano.2007.4112.
Ge
, M.
, Rong
, J.
, Fang
, X.
, and Zhou
, C.
, 2012
, “Porous Doped Silicon Nanowires for Lithium Ion Battery Anode With Long Cycle Life
,” Nano Lett.
, 12
, pp. 2318
–2323
.10.1021/nl300206e3.
Muskens
, O. L.
, Rivas
, J. G.
, Algra
, R. E.
, Bakkers
, E. P. A. M.
, and Lagendijk
, A.
, 2008
, “Design of Light Scattering in Nanowire Materials for Photovoltaic Applications
,” Nano Lett.
, 8
, pp. 2638
–2642
.10.1021/nl08080764.
Tang
, Y. B.
, Chen
, Z. H.
, Song
, H. S.
, Lee
, C. S.
, Cong
, H. T.
, Cheng
, H. M.
, Zhang
, W. J.
, Bello
, I.
, and Lee
, S. T.
, 2008
, “Vertically Aligned p-Type Single-Crystalline GaN Nanorod Arrays on n-Type Si for Heterojunction Photovoltaic Cells
,” Nano Lett.
, 8
, pp. 4191
–4195
.10.1021/nl801728d5.
Czaban
, J. A.
, Thompson
, D. A.
, and LaPierre
, R. R.
, 2009
, “GaAs Core-Shell Nanowires for Photovoltaic Applications
,” Nano Lett.
, 9
, pp. 148
–154
.10.1021/nl802700u6.
Dong
, Y.
, Tian
, B.
, Kempa
, T. J.
, and Lieber
, C. M.
, 2009
, “Coaxial Group III-Nitride Nanowire Photovoltaics
,” Nano Lett.
, 9
, pp. 2183
–2187
.10.1021/nl900858v7.
Garnett
, E.
, and Yang
, P.
, 2010
, “Light Trapping in Silicon Nanowire Solar Cells
,” Nano Lett.
, 10
, pp. 1082
–1087
.10.1021/nl100161z8.
Haraguchi
, K.
, Katsuyama
, T.
, and Hiruma
, K.
, 1994
, “Polarization Dependence of Light Emitted From GaAs p-n Junctions in Quantum Wire Crystals
,” J. Appl. Phys.
, 75
, pp. 4220
–4225
.10.1063/1.3560099.
Piccione
, B.
, Cho
, C.
, van Vugt
, L. K.
, and Agarwal
, R.
, 2012
, “All-Optical Active Switching in Individual Semiconductor Nanowires
,” Nat. Nanotechnol.
, 7
, pp. 640
–645
.10.1038/nnano.2012.14410.
Zhou
, J.
, Fei
, P.
, Gao
, Y.
, Gu
, Y.
, Liu
, J.
, Bao
, G.
, and Wang
, Z. L.
, 2008
, “Mechanical-electrical Triggers and Sensors Using Piezoelectric Microwires/Nanowires
,” Nano Lett.
, 8
, pp. 2725
–2730
.10.1021/nl801048411.
Wang
, Z.
, and Song
, J.
, 2006
, “Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays
,” Science
, 312
, pp. 242
–246
.10.1126/science.112400512.
Wang
, X.
, Song
, J.
, Liu
, J.
, and Wang
, Z. L.
, 2007
, “Direct-Current Nanogenerator Driven by Ultrasonic Waves
,” Science
, 316
, pp. 102
–105
.10.1126/science.113936613.
Wang
, X.
, Liu
, J.
, Song
, J.
, and Zhong
, L. W.
, 2007
, “Integrated Nanogenerators in Biofluid
,” Nano Lett.
, 7
, pp. 2475
–2479
.10.1021/nl071256714.
Qin
, Y.
, Wang
, X.
, and Wang
, Z. L.
, 2008
, “Microfibre-Nanowire Hybrid Structure for Energy Scavenging
,” Nature
, 451
, pp. 809
–813
.10.1038/nature0660115.
Ghosh
, S.
, Sood
, A.
, and Kumar
, N.
, 2003
, “Carbon Nanotube Flow Sensors
,” Science
, 299
, pp. 1042
–1044
.10.1126/science.107908016.
Deck
, C. P.
, Ni
, C.
, Vecchio
, K. S.
, and Bandaru
, P. R.
, 2009
, “The Response of Carbon Nanotube Ensembles to Fluid Flow: Applications to Mechanical Property Measurement and Diagnostics.
,” J. Appl. Phys.
, 106
, p. 074304
.10.1063/1.323831717.
Ming
, Z.
, Jian
, L.
, Chunxia
, W.
, Xiaokang
, Z.
, and Lan
, C.
, 2011
, “Fluid Drag Reduction on Superhydrophobic Surfaces Coated With Carbon Nanotube Forests (CNTs)
,” Soft Matter
, 7
, pp. 4391
–4396
.10.1039/c0sm01426e18.
Chen
, C.
, Ma
, M.
, Jin
, K.
, Liu
, J. Z.
, Shen
, L.
, Zheng
, Q.
, and Xu
, Z.
, 2011
, “Nanoscale Fluid-Structure Interaction: Flow Resistance and Energy Transfer Between Water and Carbon Nanotubes
,” Phys. Rev. E.
, 84
, p. 046314
.10.1103/PhysRevE.84.04631419.
Cheng
, C.
, Fan
, W.
, Cao
, J.
, Ryu
, S.-G.
, Ji
, J.
, Groigoropoulos
, C.
, and Wu
, J.
, 2011
, “Heat Transfer Across the Interface Between Nanoscale Solids and Gas
,” ACS Nano
, 5
(12
), pp. 10102
–10107
.10.1021/nn204072n20.
Chen
, R.
, Lu
, M.-C.
, Srinivasan
, V.
, Wang
, Z.
, Cho
, H.
, and Majumdar
, A.
, 2009
, “Nanowires for Enhanced Boiling Heat Transfer
,” Nano Lett.
, 9
(2
), pp. 548
–553
.10.1021/nl802685721.
Jeon
, W.
, and Blackwelder
, R.
, 2000
, “Perturbations in the Wall Region Using Flush Mounted Piezoceramic Actuators
,” Exp. F
, 28
, pp. 485
–496
.10.1007/s00348005041022.
Bilgen
, O.
, De Marqui
, C.
, Kochersberger
, K. B.
, and Inman
, D. J.
, 2010
, “Piezoceramic Composite Actuators for Flow Control in Low Reynolds Number Airflow
,” J. Intell. Mater. Syst. Struct.
, 21
, pp. 1201
–1212
.10.1177/1045389X1038165623.
Kumar
, V.
, Hays
, M.
, Fernandez
, E.
, Oates
, W.
, and Alvi
, F. S.
, 2011
, “Flow Sensitive Actuators for Micro-Air Vehicles
,” Smart Mater. Struct.
, 20
, p. 105033
.10.1088/0964-1726/20/10/10503324.
Jung
, W. J.
, Mangiavacchi
, N.
, and Akhavan
, R.
, 1992
, “Suppression of Turbulence in Wall-Bounded Flows by High-Frequency Spanwise Oscillations
,” Phys. Fluids A.
, 4
, pp. 1605
–1607
.10.1063/1.85838125.
Laadhari
, F.
, Skandaji
, L.
, and Morel
, R.
, 1994
, “Turbulence reduction in a Boundary Layer by a Local Spanwise Oscillating Surface
,” Phys. Fluids A.
, 6
, pp. 3218
–3220
.10.1063/1.86805226.
Du
, Y.
, and Karniadakis
, G.
, 2000
, “Suppressing Wall Turbulence by Means of a Transverse Traveling Wave
,” Science
, 288
, pp. 1230
–1234
.10.1126/science.288.5469.123027.
Du
, Y.
, Symeonidis
, V.
, and Karniadakis
, G. E.
, 2002
, “Drag Reduction in Wall-Bounded Turbulence via a Transverse Traveling Wave
,” J. Fluid Mech.
, 457
, pp. 1
–34
.10.1017/S002211200100761328.
Marusic
, I.
, McKeon
, B.
, Monkewitz
, P. A.
, Nagib
, H.
, Smits
, A. J.
, and Sreenivasan
, K. R.
, 2010
, “Wall-Bounded Turbulent Flows at High Reynolds Numbers: Recent Advances and Key Issues
,” Phys. Fluids
, 22
, p. 065103
.10.1063/1.345371129.
Smits
, A. J.
, McKeon
, B. J.
, and Marusic
, I.
, 2011
, “High-Reynolds Number Wall Turbulence
,” Annu. Rev. Fluid Mech.
, 43
, pp. 353
–375
.10.1146/annurev-fluid-122109-16075330.
Zanoun
, E.-S.
, Durst
, F.
, and Nagib
, H.
, 2003
, “Evaluating the Law of the Wall in Two-Dimensional Fully Developed Turbulent Channel Flows
,” Phys. Fluids
, 15
, pp. 3079
–3089
.10.1063/1.160801031.
Monty
, J. P.
, 2005
, “Developments in Smooth Wall Turbulent Duct Flows
,” Ph.D. thesis, University of Melbourne, Melbourne, Australia.32.
Hoyas
, S.
, and Jiménez
, J.
, 2006
, “Scaling of the Velocity Fluctuations in Turbulent Channels up to Reτ=2003
,” Phys. Fluids
, 18
(1
), p. 011702
.10.1063/1.216218533.
Miller
, M.
, Estejab
, B.
, and Bailey
, S.
, 2014
. “Evaluation of Hot-Wire Spatial Filtering Corrections for Wall Turbulence and Correction for End-Conduction Effects
,” Exp. Fluids
(to be published).34.
Jørgensen
, F.
, 2002
, How to Measure Turbulence With Hot-Wire Anemometers—A Practical Guide
, Dantec Dynamics
, Skovlunde, Denmark
.Copyright © 2015 by ASME
You do not currently have access to this content.