A currently unexplored mechanical application of nanowires is near-wall active flow manipulation, with potential uses mixing and filtering chemicals, enhancing convective heat transfer, and reducing drag. Here, we present experimental evidence that it is possible to introduce persistent perturbations into turbulent flow with active nanowires. A TiO2 nanowire array was fabricated and installed in the bounding wall of a turbulent channel flow, and the array was oscillated by external actuation. Measurements indicated that the array increased turbulent kinetic energy throughout the entire wall layer. These findings suggest that dynamically actuated nanowires can potentially be used to implement near-wall flow control.

References

References
1.
Chan
,
C. K.
,
Peng
,
H.
,
Liu
,
G.
,
McIlwrath
,
K.
,
Zhang
,
X. F.
,
Huggins
,
R. A.
, and
Cui
,
Y.
,
2008
, “
High-Performance Lithium Battery Anodes Using Silicon Nanowires
,”
Nat. Nanotechnol.
,
3
, pp.
31
35
.10.1038/nnano.2007.411
2.
Ge
,
M.
,
Rong
,
J.
,
Fang
,
X.
, and
Zhou
,
C.
,
2012
, “
Porous Doped Silicon Nanowires for Lithium Ion Battery Anode With Long Cycle Life
,”
Nano Lett.
,
12
, pp.
2318
2323
.10.1021/nl300206e
3.
Muskens
,
O. L.
,
Rivas
,
J. G.
,
Algra
,
R. E.
,
Bakkers
,
E. P. A. M.
, and
Lagendijk
,
A.
,
2008
, “
Design of Light Scattering in Nanowire Materials for Photovoltaic Applications
,”
Nano Lett.
,
8
, pp.
2638
2642
.10.1021/nl0808076
4.
Tang
,
Y. B.
,
Chen
,
Z. H.
,
Song
,
H. S.
,
Lee
,
C. S.
,
Cong
,
H. T.
,
Cheng
,
H. M.
,
Zhang
,
W. J.
,
Bello
, I
.
, and
Lee
,
S. T.
,
2008
, “
Vertically Aligned p-Type Single-Crystalline GaN Nanorod Arrays on n-Type Si for Heterojunction Photovoltaic Cells
,”
Nano Lett.
,
8
, pp.
4191
4195
.10.1021/nl801728d
5.
Czaban
,
J. A.
,
Thompson
,
D. A.
, and
LaPierre
,
R. R.
,
2009
, “
GaAs Core-Shell Nanowires for Photovoltaic Applications
,”
Nano Lett.
,
9
, pp.
148
154
.10.1021/nl802700u
6.
Dong
,
Y.
,
Tian
,
B.
,
Kempa
,
T. J.
, and
Lieber
,
C. M.
,
2009
, “
Coaxial Group III-Nitride Nanowire Photovoltaics
,”
Nano Lett.
,
9
, pp.
2183
2187
.10.1021/nl900858v
7.
Garnett
,
E.
, and
Yang
,
P.
,
2010
, “
Light Trapping in Silicon Nanowire Solar Cells
,”
Nano Lett.
,
10
, pp.
1082
1087
.10.1021/nl100161z
8.
Haraguchi
,
K.
,
Katsuyama
,
T.
, and
Hiruma
,
K.
,
1994
, “
Polarization Dependence of Light Emitted From GaAs p-n Junctions in Quantum Wire Crystals
,”
J. Appl. Phys.
,
75
, pp.
4220
4225
.10.1063/1.356009
9.
Piccione
,
B.
,
Cho
,
C.
,
van Vugt
,
L. K.
, and
Agarwal
,
R.
,
2012
, “
All-Optical Active Switching in Individual Semiconductor Nanowires
,”
Nat. Nanotechnol.
,
7
, pp.
640
645
.10.1038/nnano.2012.144
10.
Zhou
,
J.
,
Fei
,
P.
,
Gao
,
Y.
,
Gu
,
Y.
,
Liu
,
J.
,
Bao
,
G.
, and
Wang
,
Z. L.
,
2008
, “
Mechanical-electrical Triggers and Sensors Using Piezoelectric Microwires/Nanowires
,”
Nano Lett.
,
8
, pp.
2725
2730
.10.1021/nl8010484
11.
Wang
,
Z.
, and
Song
,
J.
,
2006
, “
Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays
,”
Science
,
312
, pp.
242
246
.10.1126/science.1124005
12.
Wang
,
X.
,
Song
,
J.
,
Liu
,
J.
, and
Wang
,
Z. L.
,
2007
, “
Direct-Current Nanogenerator Driven by Ultrasonic Waves
,”
Science
,
316
, pp.
102
105
.10.1126/science.1139366
13.
Wang
,
X.
,
Liu
,
J.
,
Song
,
J.
, and
Zhong
,
L. W.
,
2007
, “
Integrated Nanogenerators in Biofluid
,”
Nano Lett.
,
7
, pp.
2475
2479
.10.1021/nl0712567
14.
Qin
,
Y.
,
Wang
,
X.
, and
Wang
,
Z. L.
,
2008
, “
Microfibre-Nanowire Hybrid Structure for Energy Scavenging
,”
Nature
,
451
, pp.
809
813
.10.1038/nature06601
15.
Ghosh
,
S.
,
Sood
,
A.
, and
Kumar
,
N.
,
2003
, “
Carbon Nanotube Flow Sensors
,”
Science
,
299
, pp.
1042
1044
.10.1126/science.1079080
16.
Deck
,
C. P.
,
Ni
,
C.
,
Vecchio
,
K. S.
, and
Bandaru
,
P. R.
,
2009
, “
The Response of Carbon Nanotube Ensembles to Fluid Flow: Applications to Mechanical Property Measurement and Diagnostics.
,”
J. Appl. Phys.
,
106
, p.
074304
.10.1063/1.3238317
17.
Ming
,
Z.
,
Jian
,
L.
,
Chunxia
,
W.
,
Xiaokang
,
Z.
, and
Lan
,
C.
,
2011
, “
Fluid Drag Reduction on Superhydrophobic Surfaces Coated With Carbon Nanotube Forests (CNTs)
,”
Soft Matter
,
7
, pp.
4391
4396
.10.1039/c0sm01426e
18.
Chen
,
C.
,
Ma
,
M.
,
Jin
,
K.
,
Liu
,
J. Z.
,
Shen
,
L.
,
Zheng
,
Q.
, and
Xu
,
Z.
,
2011
, “
Nanoscale Fluid-Structure Interaction: Flow Resistance and Energy Transfer Between Water and Carbon Nanotubes
,”
Phys. Rev. E.
,
84
, p.
046314
.10.1103/PhysRevE.84.046314
19.
Cheng
,
C.
,
Fan
,
W.
,
Cao
,
J.
,
Ryu
,
S.-G.
,
Ji
,
J.
,
Groigoropoulos
,
C.
, and
Wu
,
J.
,
2011
, “
Heat Transfer Across the Interface Between Nanoscale Solids and Gas
,”
ACS Nano
,
5
(
12
), pp.
10102
10107
.10.1021/nn204072n
20.
Chen
,
R.
,
Lu
,
M.-C.
,
Srinivasan
, V
.
,
Wang
,
Z.
,
Cho
,
H.
, and
Majumdar
,
A.
,
2009
, “
Nanowires for Enhanced Boiling Heat Transfer
,”
Nano Lett.
,
9
(
2
), pp.
548
553
.10.1021/nl8026857
21.
Jeon
,
W.
, and
Blackwelder
,
R.
,
2000
, “
Perturbations in the Wall Region Using Flush Mounted Piezoceramic Actuators
,”
Exp. F
,
28
, pp.
485
496
.10.1007/s003480050410
22.
Bilgen
,
O.
,
De Marqui
,
C.
,
Kochersberger
,
K. B.
, and
Inman
,
D. J.
,
2010
, “
Piezoceramic Composite Actuators for Flow Control in Low Reynolds Number Airflow
,”
J. Intell. Mater. Syst. Struct.
,
21
, pp.
1201
1212
.10.1177/1045389X10381656
23.
Kumar
,
V.
,
Hays
,
M.
,
Fernandez
,
E.
,
Oates
,
W.
, and
Alvi
,
F. S.
,
2011
, “
Flow Sensitive Actuators for Micro-Air Vehicles
,”
Smart Mater. Struct.
,
20
, p.
105033
.10.1088/0964-1726/20/10/105033
24.
Jung
,
W. J.
,
Mangiavacchi
,
N.
, and
Akhavan
,
R.
,
1992
, “
Suppression of Turbulence in Wall-Bounded Flows by High-Frequency Spanwise Oscillations
,”
Phys. Fluids A.
,
4
, pp.
1605
1607
.10.1063/1.858381
25.
Laadhari
,
F.
,
Skandaji
,
L.
, and
Morel
,
R.
,
1994
, “
Turbulence reduction in a Boundary Layer by a Local Spanwise Oscillating Surface
,”
Phys. Fluids A.
,
6
, pp.
3218
3220
.10.1063/1.868052
26.
Du
,
Y.
, and
Karniadakis
,
G.
,
2000
, “
Suppressing Wall Turbulence by Means of a Transverse Traveling Wave
,”
Science
,
288
, pp.
1230
1234
.10.1126/science.288.5469.1230
27.
Du
,
Y.
,
Symeonidis
,
V.
, and
Karniadakis
,
G. E.
,
2002
, “
Drag Reduction in Wall-Bounded Turbulence via a Transverse Traveling Wave
,”
J. Fluid Mech.
,
457
, pp.
1
34
.10.1017/S0022112001007613
28.
Marusic
,
I.
,
McKeon
,
B.
,
Monkewitz
,
P. A.
,
Nagib
,
H.
,
Smits
,
A. J.
, and
Sreenivasan
,
K. R.
,
2010
, “
Wall-Bounded Turbulent Flows at High Reynolds Numbers: Recent Advances and Key Issues
,”
Phys. Fluids
,
22
, p.
065103
.10.1063/1.3453711
29.
Smits
,
A. J.
,
McKeon
,
B. J.
, and
Marusic
,
I.
,
2011
, “
High-Reynolds Number Wall Turbulence
,”
Annu. Rev. Fluid Mech.
,
43
, pp.
353
375
.10.1146/annurev-fluid-122109-160753
30.
Zanoun
,
E.-S.
,
Durst
,
F.
, and
Nagib
,
H.
,
2003
, “
Evaluating the Law of the Wall in Two-Dimensional Fully Developed Turbulent Channel Flows
,”
Phys. Fluids
,
15
, pp.
3079
3089
.10.1063/1.1608010
31.
Monty
,
J. P.
,
2005
, “
Developments in Smooth Wall Turbulent Duct Flows
,” Ph.D. thesis, University of Melbourne, Melbourne, Australia.
32.
Hoyas
,
S.
, and
Jiménez
,
J.
,
2006
, “
Scaling of the Velocity Fluctuations in Turbulent Channels up to Reτ=2003
,”
Phys. Fluids
,
18
(
1
), p.
011702
.10.1063/1.2162185
33.
Miller
,
M.
,
Estejab
,
B.
, and
Bailey
,
S.
,
2014
. “
Evaluation of Hot-Wire Spatial Filtering Corrections for Wall Turbulence and Correction for End-Conduction Effects
,”
Exp. Fluids
(to be published).
34.
Jørgensen
,
F.
,
2002
,
How to Measure Turbulence With Hot-Wire Anemometers—A Practical Guide
,
Dantec Dynamics
,
Skovlunde, Denmark
.
You do not currently have access to this content.