A theoretical framework to model the dynamics of acoustically driven microbubble inside a rigid tube is presented. The proposed model is not a variant of the conventional Rayleigh–Plesset category of models. It is derived from the reduced Navier–Stokes equation and is coupled with the evolving flow field solution inside the tube by a similarity transformation approach. The results are computed, and compared with experiments available in literature, for the initial bubble radius of Ro = 1.5 μm and 2 μm for the tube diameter of D = 12 μm and 200 μm with the acoustic parameters as utilized in the experiments. Results compare quite well with the existing experimental data. When compared to our earlier basic model, better agreement on a larger tube diameter is obtained with the proposed coupled model. The model also predicts, accurately, bubble fragmentation in terms of acoustic and geometric parameters.

References

References
1.
Schrope
,
B. A.
, and
Newhouse
,
V. L.
,
1993
, “
Second Harmonic Ultrasonic Blood Perfusion Measurement
,”
Ultrasound Med. Biol.
,
19
(
7
), pp.
567
579
.10.1016/0301-5629(93)90080-8
2.
Simpson
,
D. H.
,
Chin
,
C. T.
, and
Burns
,
P. N.
,
1999
, “
Pulse Inversion Doppler: A New Method for Detecting Nonlinear Echoes From Microbubble Contrast Agents
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
46
(
2
), pp.
372
382
.10.1109/58.753026
3.
Brock-Fisher
,
G.
,
Poland
,
M. D.
, and
Rafter
,
P. G.
,
1996
, “
Means for Increasing Sensitivity in Nonlinear Ultrasound Imaging Systems
,” US Patent No. 5577505.
4.
Dayton
,
P. A.
, and
Ferrara
,
K.
,
2002
, “
Targeted Imaging Using Ultrasound
,”
J. Magn. Resonan. Imaging
,
16
(
4
), pp.
362
377
.10.1002/jmri.10173
5.
Klibanov
,
A. L.
,
2006
, “
Microbubble Contrast Agents: Targeted Ultrasound Imaging and Ultrasound-Assisted Drug-Delivery Applications
,”
Invest. Radiol.
,
41
(
3
), pp.
354
362
.10.1097/01.rli.0000199292.88189.0f
6.
Lanza
,
G. M.
, and
Wickline
,
S. A.
,
2001
, “
Targeted Ultrasonic Contrast Agents for Molecular Imaging and Therapy
,”
Prog. Cardiovasc. Dis.
,
44
(
1
), pp.
13
31
.10.1053/pcad.2001.26440
7.
Lindner
,
J. R.
, and
Kaul
,
S.
,
2001
, “
Delivery of Drugs With Ultrasound
,”
Echocardiography
,
18
(
4
), pp.
329
337
.10.1046/j.1540-8175.2001.00329.x
8.
Bibra
,
H. V.
,
Voigt
,
J. U.
,
Froman
,
M.
,
Bone
,
D.
,
Wranne
,
B.
, and
Juhlin-Dannfeldt
,
A.
,
1999
, “
Interaction of Microbubbles With Ultrasound
,”
Echocardiography
,
16
, pp.
733
741
.10.1111/j.1540-8175.1999.tb00143.x
9.
Unger
,
E. C.
,
Matsunaga
,
T.
,
McCreery
,
T.
,
Schumann
,
P.
,
Sweitzer
,
R.
, and
Quigley
,
R.
,
2002
, “
Therapeutic Applications of Microbubbles
,”
Eur. J. Radiol.
,
42
(
s1
), pp.
160
168
.10.1016/S0720-048X(01)00455-7
10.
Ye
,
T.
, and
Bull
,
J. L.
,
2004
, “
Direct Numerical Simulations of Micro-bubble Expansion in Gas Embolotherapy
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
745
759
.10.1115/1.1824131
11.
Qamar
,
A.
,
Wong
,
Z. Z.
,
Fowlkes
,
J. B.
, and
Bull
,
J. L.
,
2012
, “
Evolution of Acoustically Vaporized Microdroplets in Gas Embolotherapy
,”
ASME J. Biomech. Eng.
,
134
(
3
), p.
031010
.10.1115/1.4005980
12.
Cosgrove
,
D.
, and
Harvey
,
C.
,
2009
, “
Clinical Uses of Microbubbles in Diagnosis and Treatment
,”
Med. Biol. Eng. Comput.
,
47
(
8
), pp.
813
826
.10.1007/s11517-009-0434-3
13.
Ryu
,
K.
,
Chung
,
S. K.
, and
Cho
,
S. K.
,
2010
, “
Micropumping by an Acoustically Excited Oscillating Bubble for Automated Implantable Microfluidic Devices
,”
J. Assoc. Lab. Autom.
,
15
(
3
), pp.
163
171
.10.1016/j.jala.2010.01.012
14.
Rood
,
E. P.
,
2008
, “
Review-Mechanisms of Cavitation Inception
,”
ASME J. Fluids Eng.
,
113
(
2
), pp.
163
175
.10.1115/1.2909476
15.
Leighton
,
T. G.
,
1994
,
The Acoustic Bubble
,
Academic Press
,
San Diego, CA
, pp.
67
196
.
16.
Doinikov
,
A. A.
, and
Bouakaz
,
A.
,
2011
, “
Review of Shell Models for Contrast Agent Microbubbles
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
58
(
5
), pp.
981
993
.10.1109/TUFFC.2011.1899
17.
Caskey
,
C. F.
,
Kruse
,
D. E.
,
Dayton
,
P. A.
,
Kitano
,
T. K.
, and
Ferrara
,
K. W.
,
2006
, “
Microbubble Oscillation in Tubes With Diameters of 12, 25, and 195 Microns
,”
Appl. Phys. Lett.
,
88
(
3
), p.
033902
.10.1063/1.2164392
18.
Caskey
,
C. F.
,
Kruse
,
D. E.
,
Dayton
,
P. A.
, and
Ferrara
,
K. W.
,
2005
, “
On the Oscillations of Microbubbles in Tubes With Diameters as Small as 12 Microns
,”
IEEE Int. Ultrason. Symp.
,
2
, pp.
854
857
.10.1109/ULTSYM.2005.1602984
19.
Garbin
,
V.
,
Cojoc
,
D.
,
Ferrari
,
E.
,
Di Fabrizio
,
E.
,
Overvelde
,
M. L. J.
,
Meer
,
van der Meer
,
S. M.
,
de Jong
,
N.
,
Lohse
,
D.
, and
Versluis
,
M.
,
2007
, “
Changes in Microbubble Dynamics Near a Boundary Revealed by Combined Optical Micromanipulation and High-Speed Imaging
,”
Appl. Phys. Lett.
,
90
(
11
), p.
114103
.10.1063/1.2713164
20.
Zheng
,
H.
,
Dayton
,
P. A.
,
Caskey
,
C.
,
Zhao
,
S.
,
Qin
,
S.
, and
Ferrara
,
K. W.
,
2007
, “
Ultrasound-Driven Microbubble Oscillation and Translation Within Small Phantom Vessels
,”
Ultrasound Med. Biol.
,
33
(
12
), pp.
1978
1987
.10.1016/j.ultrasmedbio.2007.06.007
21.
Oguz
,
H. N.
, and
Prosperetti
,
A.
,
1998
, “
The Natural Frequency of Oscillation of Gas Bubbles in Tubes
,”
J. Acoust. Soc. Am.
,
103
(
6
), pp.
3301
3308
.10.1121/1.423043
22.
Chen
,
X. M.
, and
Prosperetti
,
A.
,
1998
, “
Thermal Processes in the Oscillations of Gas Bubbles in Tubes
,”
J. Acoust. Soc. Am.
,
104
(
3
), pp.
1389
1398
.10.1121/1.424348
23.
Sassaroli
,
E.
, and
Hynynen
,
K.
,
2005
, “
Resonance Frequency of Microbubbles in Small Blood Vessels: A Numerical Study
,”
Phys. Med. Biol.
,
50
(
22
), pp.
5293
5305
.10.1088/0031-9155/50/22/006
24.
Krasovitski
,
B.
, and
Kimmel
,
E.
,
2001
, “
Gas Bubble Pulsation in a Semiconfined Space Subjected to Ultrasound
,”
J. Acoust. Soc. Am.
,
109
(
3
), pp.
891
898
.10.1121/1.1346683
25.
Hu
,
Y. T.
,
Qin
,
S.
,
Hu
,
T.
,
Ferrara
,
K. W.
, and
Jiang
,
Q.
,
2005
, “
Asymmetric Oscillation of Cavitation Bubbles in a Microvessel and its Implications Upon Mechanisms of Clinical Vessel Injury in Shock-Wave Lithotripsy
,”
Int. J. Non-Linear Mech.
,
40
(
2–3
), pp.
341
350
.10.1016/j.ijnonlinmec.2004.06.007
26.
Doinikov
,
A. A.
, and
Bouakaz
,
A.
,
2013
, “
Ultrasonically Induced Dynamics of a Contrast Agent Microbubble Between Two Parallel Elastic Walls
,”
Phys. Med. Biol.
,
58
(
19
), pp.
6797
6814
.10.1088/0031-9155/58/19/6797
27.
Doinikov
,
A. A.
, and
Bouakaz
,
A.
,
2011
, “
Acoustic Scattering From a Contrast Agent Microbubble Near an Elastic Wall of Finite Thickness
,”
Phys. Med. Biol.
,
56
(
21
), pp.
6951
6967
.10.1088/0031-9155/56/21/012
28.
Doinikov
,
A. A.
, and
Bouakaz
,
A.
,
2012
, “
Dynamics of a Contrast Agent Microbubble Attached to an Elastic Wall
,”
IEEE Trans. Med. Imaging
,
31
(
3
), pp.
654
662
.10.1109/TMI.2011.2174647
29.
Hay
,
T. A.
,
Hamilton
,
M. F.
,
Ilinskii
,
A.
, and
Zabolotskaya
,
Z. A.
,
2012
, “
Model for Bubble Pulsation in Liquid Between Parallel Viscoelastic Layers
,”
J. Acoust. Soc. Am.
,
132
(
1
), pp.
124
137
.10.1121/1.4707489
30.
Ye
,
T.
, and
Bull
,
J. L.
,
2006
, “
Microbubble Expansion in a Flexible Tube
,”
ASME J. Biomech. Eng.
,
128
(
4
), pp.
554
563
.10.1115/1.2206200
31.
Qin
,
S. P.
, and
Ferrara
,
K. W.
,
2006
, “
The Natural Frequency of Nonlinear Oscillation of Ultrasound Contrast Agents in Microvessels
,”
Ultrasound Med. Biol.
,
128
(
7
), pp.
1140
1148
.10.1016/j.ultrasmedbio.2006.12.009
32.
Qin
,
S. P.
,
Hu
,
Y. T.
, and
Jiang
,
Q.
,
2006
, “
Oscillatory Interaction Between Bubbles and Confining Microvessels and its Implications on Clinical Vascular Injuries of Shockwave Lithotripsy
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
53
(
7
), pp.
1322
1329
.10.1109/TUFFC.2006.1665080
33.
Qin
,
S. P.
, and
Ferrara
,
K. W.
,
2006
, “
Acoustic Response of Compliable Microvessels Containing Ultrasound Contrast Agents
,”
Phys. Med. Biol.
,
51
(
20
), pp.
5065
5088
.10.1088/0031-9155/51/20/001
34.
Qamar
,
A.
,
Samtaney
,
R.
, and
Bull
,
J. L.
,
2013
, “
Dynamics of Micro-bubble Sonication Inside a Phantom Vessel
,”
Appl. Phys. Lett.
,
102
(
1
), p.
013702
.10.1063/1.4773909
35.
Pritchard
,
P. J.
,
2011
,
Fox and Mcdonald's Introduction to Fluid Mechanics
,
8th ed.
,
Wiley
,
Hoboken, NJ
.
36.
White
,
F.
,
2005
,
Viscous Fluid Flow
,
3rd ed.
,
McGraw-Hill Mechanical Engineering
,
New York
.
37.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,”
Oxford University Press
,
New York
, pp.
47
75
.
38.
Snchez-sanz
,
M.
, and
Blyth
,
M.
,
2007
, “
Unsteady Axisymmetric Stagnation Flow on a Circular Cylinder
,”
Q. J. Mech. Appl. Math.
,
60
(
2
), pp.
125
138
.10.1093/qjmam/hbl027
39.
Purohit
,
G.
, and
Verma
,
R.
,
1992
, “
Unsteady Axisymmetric Stagnation Point Flow
,”
Fluid Dyn. Res.
,
10
(
3
), pp.
193
198
.10.1016/0169-5983(92)90020-W
40.
Church
,
C. C.
,
1995
, “
The Effects of an Elastic Solid Surface Layer on the Radial Pulsations of Gas Bubbles
,”
J. Acoust. Soc. Am.
,
97
(
3
), pp.
1510
1521
.10.1121/1.412091
41.
de Jong
,
N.
,
Hoff
,
L.
,
Skotland
,
T.
, and
Bom
,
N.
,
1992
, “
Absorption and Scatter of Encapsulated Gas Filled Microspheres: Theoretical Considerations and Some Measurements
,”
Ultrasonics
,
30
(
2
), pp.
95
103
.10.1016/0041-624X(92)90041-J
You do not currently have access to this content.