The fluid dynamic interaction between a uniform free stream flow and the rotation induced flow from a sharp edged body is numerically investigated. A two-dimensional (2D) finite volume based computation is performed in this regard to simulate the laminar fluid flow around a rotating square cylinder in an unconfined medium. Body fitted grid system along with moving boundaries is used to obtain the numerical solution of the incompressible Navier–Stokes equations. The Reynolds number based on the free stream flow is kept in the range 10Re200 with a dimensionless rotational speed of the cylinder in the range 0Ω5. At low Re=10, the flow field remains steady irrespective of the rotational speed. For 50Re200, regular low frequency Kármán vortex shedding (VS) is observed up to a critical rate of rotation (Ωcr). Beyond Ωcr, the global flow shows steady nature, although high frequency oscillations in the aerodynamic coefficients are present. The rotating circular cylinder also shows likewise degeneration of Kármán VS at some critical rotational speed. However, significant differences can be seen at higher rotation. Such fluid dynamic transport around a spinning square in an unconfined free stream flow is reported for the first time.

References

References
1.
Tokumaru
,
P. T.
, and
Dimotakis
,
P. E.
,
1991
, “
Rotary Oscillation Control of Cylinder Wake
,”
J. Fluid Mech.
,
224
(3), pp.
77
90
.10.1017/S0022112091001659
2.
Chew
,
Y. T.
,
Cheng
,
M.
, and
Luo
,
S. C.
,
1995
, “
A Numerical Study of Flow Past a Rotating Circular Cylinder Using a Hybrid Vortex Scheme
,”
J. Fluid Mech.
,
299
(18), pp.
35
71
.10.1017/S0022112095003417
3.
Modi
,
V. J.
,
1997
, “
Moving Surface Boundary-Layer Control: A Review
,”
J. Fluids Struct.
,
11
(
6
), pp.
627
663
.10.1006/jfls.1997.0098
4.
Padrino
,
J. C.
, and
Joseph
,
D. D.
,
2006
, “
Numerical Study of the Steady-State Uniform Flow Past a Rotating Cylinder
,”
J. Fluid Mech.
,
557
(12), pp.
191
223
.10.1017/S0022112006009682
5.
Chatterjee
,
D.
, and
Mondal
,
B.
,
2011
, “
Effect of Thermal Buoyancy on Vortex Shedding Behind a Square Cylinder in Cross Flow at Low Reynolds Number
,”
Int. J. Heat Mass Transfer
,
54
(25–26), pp.
5262
5274
.10.1016/j.ijheatmasstransfer.2011.08.016
6.
Phutthavong
,
P.
, and
Hassan
,
I.
,
2004
, “
Transient Performance of Flow Over a Rotating Object Placed Eccentrically Inside a Microchannel-Numerical Study
,”
Microfluid. Nanofluid.
,
1
(
1
), pp.
71
85
.10.1007/s10404-004-0006-7
7.
Kang
,
S.
,
Choi
,
H.
, and
Lee
,
S.
,
1999
, “
Laminar Flow Past a Rotating Circular Cylinder
,”
Phys. Fluids
,
11
(11), pp.
3312
3321
.10.1063/1.870190
8.
Hu
,
G.
,
Sun
,
D.
,
Yin
,
X.
, and
Tong
,
B.
,
1996
, “
Hopf Bifurcation in Wakes Behind a Rotating and Translating Circular Cylinder
,”
Phys. Fluids
,
8
(7), pp.
1972
1974
.10.1063/1.868976
9.
Stojkovic
,
D.
,
Breuer
,
M.
, and
Durst
,
F.
,
2002
, “
Effect of High Rotation Rates on the Laminar Flow Around a Circular Cylinder
,”
Phys. Fluids
,
14
(9), pp.
3160
3178
.10.1063/1.1492811
10.
Stojkovic
,
D.
,
Schon
,
P.
,
Breuer
,
M.
, and
Durst
,
F.
,
2003
, “
On the New Vortex Shedding Mode Past a Rotating Circular Cylinder
,”
Phys. Fluids
,
15
(5), pp.
1257
1260
.10.1063/1.1562940
11.
Mittal
,
S.
, and
Kumar
,
B.
,
2003
, “
Flow Past a Rotating Cylinder
,”
J. Fluid Mech.
,
476
(3), pp.
303
334
.10.1017/S0022112002002938
12.
Hwang
,
J.-Y.
,
Bremhorst
,
K.
, and
Yang
,
K.-S.
,
2006
, “
Direct Numerical Simulation of Turbulent Flow Around a Rotating Circular Cylinder
,”
ASME J. Fluids Eng.
,
129
(1), pp.
40
47
.10.1115/1.2375133
13.
Yoon
,
D.-H.
,
Yang
,
K.-S.
, and
Bremhorst
,
K.
,
2011
, “
Effects of Schmidt Number on Turbulent Mass Transfer Around a Rotating Circular Cylinder
,”
ASME J. Fluids Eng.
,
133
(
8
), p.
081204
.10.1115/1.4004635
14.
Labraga
,
L.
,
Kahissim
,
G.
,
Keirsbulck
,
L.
, and
Beaubert
,
F.
,
2007
, “
An Experimental Investigation of the Separation Points on a Circular Rotating Cylinder in Cross Flow
,”
ASME J. Fluids Eng.
,
129
(
9
), pp.
1203
1211
.10.1115/1.2746894
15.
Zaki
,
T. G.
,
Sen
,
M.
, and
Gadel-Hak
,
M.
,
1994
, “
Numerical and Experimental Investigation of Flow Past a Freely Rotatable Square Cylinder
,”
J. Fluids Struct.
,
8
(
6
), pp.
555
582
.10.1016/S0889-9746(94)90020-5
16.
Ming
,
N. D.
, and
Zhong
,
L. J.
,
2010
, “
Characteristics of Flow Around an Impulsively Rotating Square Cylinder Via LB-DF/FD Method
,”
Chin. Phys. Lett.
,
27
(10), p.
104701
.10.1088/0256-307X/27/10/104701
17.
Ohba
,
H.
, and
Kuroda
,
S.
,
1993
, “
Numerical Analysis of Flows Around a Rotating Square Cylinder
,”
JSME Int. J. B.
,
36
(
4
), pp.
592
597
.10.1299/jsmeb.36.592
18.
Sohankar
,
A.
,
Norberg
,
C.
, and
Davidson
,
L.
,
1998
, “
Low-Reynolds-Number Flow Around a Square Cylinder at Incidence: Study of Blockage, Onset of Vortex Shedding and Outlet Boundary Condition
,”
Int. J. Numer. Methods Fluids
,
26
(1), pp.
39
56
.10.1002/(SICI)1097-0363(19980115)26:1<39::AID-FLD623>3.0.CO;2-P
19.
Yoon
,
D.-H.
,
Yang
,
K.-S.
, and
Choi
,
C.-B.
,
2010
, “
Flow Past a Square Cylinder With an Angle of Incidence
,”
Phys. Fluids
,
22
(4), p.
043603
.10.1063/1.3388857
20.
Shih
,
Y.-C.
,
Khodadadi
,
J. M.
,
Weng
,
K.-H.
, and
Ahmed
,
A.
,
2009
, “
Periodic Fluid Flow and Heat Transfer in a Square Cavity Due to an Insulated or Isothermal Rotating Cylinder
,”
ASME J. Heat Transfer
,
131
(
11
), p.
111701
.10.1115/1.3154620
21.
Yang
,
L.
, and
Farouk
,
B.
,
1995
, “
Mixed Convection Around a Heated Rotating Horizontal Square Cylinder in a Circular Enclosure
,”
Numer. Heat Transfer A
,
28
(1), pp.
1
18
.10.1080/10407789508913729
22.
FLUENT 6.0 User's Guide, Vol. 5, Fluent Inc., Lebanon, NH,
2001
.
23.
González
,
J.
,
Fernández
,
J.
,
Blanco
,
E.
, and
Santolaria
,
C.
,
2002
, “
Numerical Simulation of the Dynamic Effects Due to Impeller-Volute Interaction in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
124
(2), pp.
348
355
.10.1115/1.1457452
24.
Shimizu
,
Y.
, and
Tanida
,
Y.
,
1978
, “
Fluid Forces Acting on Cylinders of Rectangular Cross-Section
,”
Trans. JSME B
,
44
(
384
), pp.
2699
2706
.10.1299/kikai1938.44.2699
25.
Okajima
,
A.
,
Yi
,
D.
,
Sakuda
,
A.
, and
Nakano
,
T.
,
1997
, “
Numerical Study of Blockage Effects on Aerodynamic Characteristics of an Oscillating Rectangular Cylinder
,”
J. Wind Eng. Ind. Aero.
,
67–68
, pp.
91
102
.10.1016/S0167-6105(97)00065-2
26.
Sohankar
,
A.
,
Norberg
,
C.
, and
Davidson
,
L.
,
1997
, “
Numerical Simulation of Unsteady Low-Reynolds Number Flow Around Rectangular Cylinders at Incidence
,”
J. Wind Eng. Ind. Aero.
,
69
, pp.
189
201
.10.1016/S0167-6105(97)00154-2
27.
Robichaux
,
J.
,
Balachandar
,
S.
, and
Vanka
,
S. P.
,
1999
, “
Three-Dimensional Floquet Instability of the Wake of Square Cylinder
,”
Phys. Fluids
,
11
(3), pp.
560
578
.10.1063/1.869930
You do not currently have access to this content.