An experimental investigation was carried out to study the turbulent flow over a flat plate in a wind tunnel. The turbulence was generated by a plate with diamond-shaped perforations mounted perpendicular to and on the leading edge of the flat plate. Unlike conventional grid turbulence studies, this perforated plate had a finite height, and this height was explored as a key independent parameter. Instantaneous velocity measurements were performed with a 1D hot-wire anemometer to reveal the behavior of the flow a short distance downstream of the perforated plate (X/D = 10–30). Different perforated plate heights (H = 3, 7, 11 cm) and free stream velocities (U = 4.5, 5.5, 6.5 m/s) have been studied.

References

References
1.
Evans
,
D. L.
, and
Florschuetz
,
L. W.
,
1977
, “
Cost Studies on Terrestrial Photovoltaic Power Systems With Sunlight Concentration
,”
Sol. Energy
,
19
, pp.
255
262
.10.1016/0038-092X(77)90068-8
2.
Spectrolab, Inc.
, and
Sylmar
,
C. A.
,
1977
, “
Photovoltaic Systems Concept Study: Final Report
,” U.S. Department of Energy, Division of Solar Energy, Springfield, VA, Report No. ALO-2748-12.
3.
Evans
,
D. L.
,
1981
, “
Simplified Method for Predicting Photovoltaic Array Output
,”
Sol. Energy
,
27
(
6
), pp.
555
560
.10.1016/0038-092X(81)90051-7
4.
Aste
,
N.
,
Chiesa
,
G.
, and
Verri
,
F.
,
2008
, “
Design, Development and Performance Monitoring of a Photovoltaic-Thermal (PV/T) Air Collector
,”
Renewable Energy
,
33
(
5
), pp.
914
927
.10.1016/j.renene.2007.06.022
5.
Fouladi
,
F.
,
Henshaw
,
P.
, and
Ting
,
D. S.-K.
,
2013
, “
Enhancing Smart Grid Realisation With Accurate Prediction of Photovoltaic Performance Based on Weather Forecast
,”
Int. J. Environ. Stud.
,
70
(
5
), pp.
754
764
.10.1080/00207233.2013.798497
6.
Taylor
,
G. I.
,
1935
, “
Statistical Theory of Turbulence
,”
Proc. R. Soc. London, Ser. A
,
151
, pp.
421
478
.10.1098/rspa.1935.0158
7.
Hinze
,
J. O.
,
1975
,
Turbulence
,
2nd ed.
,
McGraw-Hill
,
New York
.
8.
Batchelor
,
G. K.
,
1948
, “
Energy Decay and Self-Preserving Correlation Functions in Isotropic Turbulence
,”
Q. Appl. Math.
,
6
, pp.
97
116
.
9.
Batchelor
,
G. K.
, and
Townsend
,
A. A.
,
1948
, “
Decay of Isotropic Turbulence in the Initial Period
,”
Proc. R. Soc. London A
,
193
, pp.
539
558
.10.1098/rspa.1948.0061
10.
Batchelor
,
G. K.
, and
Townsend
,
A. A.
,
1948
, “
Decay of Isotropic Turbulence in the Final Period
,”
Proc. R. Soc. London A
,
194
, pp.
527
543
.10.1098/rspa.1948.0095
11.
Grant
,
H. L.
, and
Nisbet
,
I. C. T.
,
1957
, “
The Inhomogeneity of Grid Turbulence
,”
J. Fluid Mech.
,
2
(
3
), pp.
263
272
.10.1017/S0022112057000117
12.
Grant
,
H. L.
,
1958
, “
The Large Eddies of Turbulent Motion
,”
J. Fluid Mech.
,
4
(
2
), pp.
149
190
.10.1017/S0022112058000379
13.
Uberoi
,
M. S.
,
1963
, “
Energy Transfer in Isotropic Turbulence
,”
Phys. Fluids
,
6
(
8
), pp.
1048
1056
.10.1063/1.1706861
14.
Uberoi
,
M. S.
, and
Wallis
,
S.
,
1966
, “
Small Axisymmetric Contraction of Grid Turbulence
,”
J. Fluid Mech.
,
24
(
3
), pp.
539
543
.10.1017/S0022112066000806
15.
Comte-Bellot
,
G.
, and
Corrsin
,
S.
,
1966
, “
The Use of a Contraction to Improve the Isotropy of Grid-Generated Turbulence
,”
J. Fluid Mech.
,
25
(
4
), pp.
657
682
.10.1017/S0022112066000338
16.
Uberoi
,
M. S.
, and
Wallis
,
S.
,
1967
, “
Effect of Grid Geometry on Turbulence Decay
,”
Phys. Fluids
,
10
(
6
), pp.
1216
1224
.10.1063/1.1762265
17.
Van Atta
,
C. W.
, and
Chen
,
R.
,
1968
, “
Correlation Measurements in Grid Turbulence Using Digital Harmonic Analysis
,”
J. Fluid Mech.
,
34
(
3
), pp.
497
515
.10.1017/S0022112068002041
18.
Uberoi
,
M. S.
, and
Wallis
,
S.
,
1969
, “
Spectra of Grid Turbulence
,”
Phys. Fluids
,
12
(
7
), pp.
1355
1358
.10.1063/1.1692674
19.
Van Atta
,
C. W.
, and
Chen
,
R.
,
1969
, “
Measurements of Spectral Energy Transfer in Grid Turbulence
,”
J. Fluid Mech.
,
38
(
4
), pp.
743
763
.10.1017/S0022112069002576
20.
Murzyn
,
F.
, and
Bélorgey
,
M.
,
2005
, “
Experimental Investigation of the Grid-Generated Turbulence Features in a Free Surface Flow
,”
Exp. Therm. Fluid Sci.
,
29
(
8
), pp.
925
935
.10.1016/j.expthermflusci.2005.02.002
21.
Liu
,
R.
,
Ting
,
D. S.-K.
, and
Checkel
,
M. D.
,
2007
, “
Constant Reynolds Number Turbulence Downstream of an Orificed Perforated Plate
,”
Exp. Therm. Fluid Sci.
,
31
(
8
), pp.
897
908
.10.1016/j.expthermflusci.2006.09.007
22.
Llor
,
A.
,
2011
, “
Langevin Equation of Big Structure Dynamics in Turbulence: Landau's Invariant in the Decay of Homogeneous Isotropic Turbulence
,”
Eur. J. Mech. B/Fluids
,
30
(
5
) pp.
480
504
.10.1016/j.euromechflu.2011.04.009
23.
Liberzon
,
A.
,
Gurka
,
R.
,
Sarathi
,
P.
, and
Kopp
,
G. A.
,
2012
, “
Estimate of Turbulent Dissipation in a Decaying Grid Turbulent Flow
,”
Exp. Therm. Fluid Sci.
,
39
, pp.
71
78
.10.1016/j.expthermflusci.2012.01.010
24.
George
,
W. K.
,
2012
, “
Asymptotic Effect of Initial and Upstream Conditions on Turbulence
,”
ASME J. Fluid Eng.
,
134
(
6
), p.
061203
.10.1115/1.4006561
25.
Horender
,
S.
,
2013
, “
Turbulent Flow Downstream of a Large Solidity Perforated Plate: Near-Field Characteristics of Interacting Jets
,”
Fluid Dyn. Res.
,
45
(
2
), p.
025501
.10.1088/0169-5983/45/2/025501
26.
Uberoi
,
M. S.
, and
Wallis
,
S.
,
1967
, “
Effect of Grid Geometry on Turbulence Decay
,”
Phys. Fluids
,
10
, pp.
1216
1224
.10.1063/1.1762265
27.
Lavoie
,
P.
,
Antonia
,
R. A.
, and
Djenidi
,
L.
,
2004
, “
Effect of Grid Geometry on the Scale-By-Scale Budget of Decaying Grid Turbulence
,”
15th Australasian Fluid Mechanics Conference
, University of Sydney, Sydney, Australia, Dec. 13–17.
28.
Liu
,
R.
,
Ting
,
D. S.-K.
, and
Rankin
,
G. W.
,
2004
, “
On the Generation of Turbulence With a Perforated Plate
,”
Exp. Therm. Fluid Sci.
,
28
(
4
), pp.
307
316
.10.1016/S0894-1777(03)00106-7
29.
Liu
,
R.
, and
Ting
,
D. S.-K.
,
2007
, “
Turbulent Flow Downstream of a Perforated Plate: Sharp-Edged Orifice Versus Finite-Thickness Holes
,”
ASME J. Fluid Eng.
,
129
(
9
), pp.
1164
1171
.10.1115/1.2754314
30.
Judd
,
M.
,
Raupach
,
J. M. R.
, and
Finnigan
,
J. J.
,
1996
, “
A Wind Tunnel Study of Turbulent Flow Around Single and Multiple Windbreaks, Part I: Velocity Fields
,”
Boundary-Layer Meteorol.
,
80
, pp.
127
165
.10.1007/BF00119015
31.
Arianmehr
,
I.
,
Ting
,
D. S.-K.
, and
Ray
,
S.
,
2013
, “
Assisted Turbulence Convective Heat Transfer for Cooling the Photovoltaic Cells
,”
ASME
Paper HT2013-17210.10.1115/HT2013-17210
32.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1996
,
Fundamentals of Heat and Mass Transfer
,
3rd ed.
,
Wiley
,
NY
.
33.
Jørgensen
,
F. E.
,
2002
,
How to Measure Turbulence With Hot-Wire Anemometers—A Practical Guide
, Dantec Dynamics, Skovlunde, Denmark.
34.
Ting
,
D. S. K.
,
2013
,
Some Basics of Engineering Flow Turbulence
,
revised ed.
,
Naomi Ting's Book
,
Windsor, Canada
.
35.
Van Atta
,
C. W.
, and
Chen
,
W. Y.
,
1969
, “
Measurements of Spectral Energy Transfer in Grid Turbulence
,”
J. Fluid Mech.
,
38
(
4
), pp.
43
763
.10.1017/S0022112069002576
36.
Taylor
,
G. I.
,
1938
, “
The Spectrum of Turbulence
,”
Proc. R. Soc. London, Ser. A
,
164
, pp.
476
490
.10.1098/rspa.1938.0032
37.
Dennis
,
D. J. C.
, and
Nickels
,
T. B.
,
2008
, “
On the Limitations of Taylor's Hypothesis in Constructing Long Structures in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
614
, pp.
197
206
.10.1017/S0022112008003352
38.
Lin
,
C. C.
,
1953
, “
On Taylor's Hypothesis and the Acceleration Terms in the Navier–Stokes Equation
,”
Q. Appl. Math.
,
10
, pp.
295
306
.10.1142/9789814415651_0011
39.
Lumley
,
J. L.
,
1965
, “
Interpretation of Time Spectra Measured in High-Intensity Shear Flows
,”
Phys. Fluids
,
8
(
6
), pp.
1056
1062
.10.1063/1.1761355
40.
Builtjes
,
P. J. H.
,
1975
, “
Determination of the Eulerian Longitudinal Integral Length Scale in a Turbulent Boundary Layer
,”
Appl. Sci. Res.
,
31
(
5
), pp.
397
399
.10.1007/BF00418049
41.
White
,
F. M.
,
2003
,
Fluid Mechanics
,
5th ed.
,
McGraw-Hill
,
NY
.
42.
Kline
,
S. J.
,
Lestin
,
A. V.
, and
Waitman
,
B. A.
,
1960
, “
Preliminary Experimental Investigation of Effects of Free-Stream Turbulence on Turbulent Boundary Layer Growth
,” NASA TN D-368.
43.
Evans
,
R. L.
,
1972
, “
Free Stream Turbulence Effect on the Turbulent Boundary Layer
,” Department of Engineering, University of Cambridge, Report No. CUED/A Turbo/TR41.
44.
White
,
F.
,
1991
,
Viscous Fluid Flow
,
2nd ed.
,
McGraw-Hill
,
NY
.
45.
Vafai
,
K.
, and
Tien
,
C. L.
,
1981
, “
Boundary and Inertia Effects on Flow and Heat Transfer in Porous
,”
Int. J. Heat Mass Transfer
,
24
, pp.
195
203
.10.1016/0017-9310(81)90027-2
46.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2011
,
Theory and Design for Mechanical Measurements
,
5th ed.
,
Wiley
,
NY
.
47.
Alfredsson
,
P. H.
,
Örlü
,
R.
, and
Segalini
,
A.
,
2012
, “
A New Formulation for the Streamwise Turbulence Intensity Distribution in Wall-Bounded Turbulent Flows
,”
Eur. J. Mech. B/Fluids
,
36
, pp.
167
175
.10.1016/j.euromechflu.2012.03.015
48.
Patten
,
N.
,
Griffin
,
P.
, and
Young
,
T. M.
,
2013
, “
Effects of Freestream Turbulence on the Characteristics in the Boundary Layer Near the Transition Onset Location
,”
ASME J. Fluid Eng.
,
135
(
7
), p.
071203
.10.1115/1.4023989
49.
Westin
,
K. J. A.
,
Bakchinov
,
A. A.
,
Kozlov
,
V. V.
, and
Alfredsson
,
P. H.
,
1998
, “
Experiments on Localized Disturbances in a Flat Plate Boundary Layer. Part 1. The Receptivity and Evolution of a Localized Free Stream Disturbance
,”
Eur. J. Mech. B/Fluids
,
17
, pp.
823
846
.10.1016/S0997-7546(99)80016-8
50.
Alving
,
A. E.
, and
Fernholz
,
H. H.
,
1996
, “
Turbulence Measurements Around a Mild Separation Bubble and Downstream of Reattachment
,”
J. Fluid Mech.
,
322
, pp.
297
328
.10.1017/S0022112096002807
51.
Barrett
,
M. J.
, and
Hollingsworth
,
D. K.
,
2001
, “
On the Calculation of Length Scales for Turbulent Heat Transfer Correlation
,”
ASME J. Heat Transfer
,
123
(
5
), pp.
878
883
.10.1115/1.1391277
52.
Carullo
,
J. S.
,
Nasir
,
S.
,
Cress
,
R. D.
,
Ng
,
W. F.
,
Thole
,
K. A.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2011
, “
The Effects of Freestream Turbulence, Turbulence Length Scale, and Exit Reynolds Number on Turbine Blade Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
,
133
(
1
), p.
011030
.10.1115/1.4001366
53.
Peyrin
,
F.
, and
Kondjoyan
,
A.
,
2002
, “
Effect of Turbulent Integral Length Scale on Heat Transfer Around a Circular Cylinder Placed Cross to an Air flow
,”
Exp. Therm. Fluid Sci.
,
26
, pp.
455
460
.10.1016/S0894-1777(02)00165-6
You do not currently have access to this content.