Direct numerical simulations (DNSs) of rotating turbulent Poiseuille flows are performed to study the effects of both cyclonic and anticyclonic system rotation on the kinematics of the quasi-streamwise vortices. By using the second invariant of the deformation tensor, a number of streamwise vortices are detected and averaged in the wall vicinity where the intense sweep motion, i.e., the inrush motion of high-speed fluid toward the wall, is related to the quasi-streamwise vortices. The effects of the system rotation on the angle of vortex axis are clearly observed as studied in longitudinal vortices of the homogeneous shear flow. Moreover, by calculating the probability of the emergence of the counterclockwise vortices (CCVs) around a clockwise vortex (CV), we find that with increase in the anticyclonic system rotation, the probability increases and decreases in the ejection and sweep sides of a CV, respectively. In contrast, cyclonic system rotation attenuates CCVs in both sides of a CV, though it increases at the top of the CV. This distribution of CCVs is found to affect sweep motion related to the quasi-streamwise vortices.

References

References
1.
Johnston
,
J. P.
,
Halleen
,
R. M.
, and
Lezius
,
D. K.
,
1972
, “
Effects of Spanwise System Rotation on the Structure of Two-Dimensional Fully Developed Turbulent Channel Flow
,”
J. Fluid Mech.
,
56
(
3
), pp.
533
557
.10.1017/S0022112072002502
2.
Wu
,
H.
, and
Kasagi
,
N.
,
2004
, “
Effect Arbitrary Directional System Rotation on Turbulent Channel Flow
,”
Phys. Fluids
,
16
, pp.
979
990
.10.1063/1.1649337
3.
Kristoffersen
,
R.
, and
Andersson
,
H. I.
,
1993
, “
Direct Numerical Simulation of Low-Reynolds Number Turbulent Flow in a Rotating Channel
,”
J. Fluid Mech.
256
, pp.
163
197
.10.1017/S0022112093002757
4.
Nakabayashi
,
K.
, and
Kitoh
,
O.
,
1996
, “
Low Reynolds Number Fully Developed Turbulent Channel Flow With System Rotation
,”
J. Fluid Mech.
,
315
, pp.
1
29
.10.1017/S0022112096002303
5.
Nakabayashi
,
K.
, and
Kitoh
,
O.
,
2005
, “
Turbulence Characteristics of Two-Dimensional Turbulent Channel Flow With System Rotation
,”
J. Fluid Mech.
,
528
, pp.
355
377
.10.1017/S0022112004002939
6.
Grundestam
,
O.
,
Wallin
,
S.
, and
Johansson
,
A. V.
,
2008
, “
Direct Numerical Simulations of Rotating Turbulent Channel Flow
,”
J. Fluid Mech.
,
598
, pp.
177
199
.10.1017/S0022112007000122
7.
Iida
,
O.
,
Fukudome
,
K.
,
Iwata
,
T.
, and
Nagano
,
Y.
,
2010
, “
Low Reynolds Number Effects on Rotating Turbulent Poiseuille Flow
,”
Phys. Fluids
,
22
, p.
085106
.10.1063/1.3478980
8.
Uchiyama
,
T.
,
Hamada
,
H.
, and
Degawa
,
T.
,
2013
, “
Numerical Simulation of Rotating Turbulent Channel Flow by the Vortex in Cell Method
,”
Open Transp. Phenom. J.
,
5
, pp.
30
41
.10.2174/1877729501305010030
9.
Ishida
,
T.
,
Tsukahara
,
T.
, and
Kawaguchi
,
Y.
,
2014
, “
Large-Scale Structure Alternation in Rotating Plane Poiseuille Flow at Transitional Reynolds Number
,”
Appl. Therm. Eng.
(in press).
10.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
P.
,
1987
, “
Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
177
, pp.
133
166
.10.1017/S0022112087000892
11.
Robinson
,
S. K.
,
1991
, “
The Kinematics of Turbulent Boundary Layer Structure
,” NASA Technical Memorandum No. 103859.
12.
Jimenez
,
J.
, and
Moin
,
P.
,
1991
, “
The Minimal Flow Unit in Near-Wall Turbulence
,”
J. Fluid Mech.
,
225
, pp.
213
240
.10.1017/S0022112091002033
13.
Choi
,
H.
,
Moin
,
P.
, and
Kim
,
J.
,
1994
,“
Active Turbulence Control for Drag Reduction in Wall-Bounded Flows
,”
J. Fluid Mech.
,
262
, pp.
75
110
.10.1017/S0022112094000431
14.
Iida
,
O.
,
Tsukamoto
,
Y.
, and
Nagano
,
Y.
,
2008
, “
The Tilting Mechanism of a Longitudinal Vortical Structure in a Homogeneous Shear Flow With and Without Spanwise Rotation
,”
Flow, Turbul. Combust.
,
81
(1–2), pp.
17
37
.10.1007/s10494-007-9125-z
15.
Brethouwer
,
G.
,
2005
, “
The Effect of Rotation on Rapidly Sheared Homogeneous Turbulence and Passive Scalar Transport. Linear Theory and Direct Numerical Simulation
,”
J. Fluid Mech.
,
542
(2005), pp.
305
342
.10.1017/S0022112005006427
16.
Jacobitz
,
F. G.
,
Liechtenstein
,
L.
,
Schneider
,
K.
, and
Farge
,
M.
,
2008
, “
On the Structure and Dynamics of Sheared and Rotating Turbulence: Direct Numerical Simulation and Wavelet-Based Coherent Vortex Extraction
,”
Phys. Fluids
,
20
(4), p.
045103
.10.1063/1.2896284
17.
Jeong
,
J.
,
Hussain
,
F.
,
Schoppa
,
W.
, and
Kim
,
J.
,
1997
, “
Coherent Structures Near the Wall in a Turbulent Channel Flow
,”
J. Fluid Mech.
,
332
, pp.
185
214
.
18.
Le
,
A.-T.
,
Coleman
,
G. N.
, and
Kim
,
J.
,
2000
,“
Near-Wall Turbulence Structures in Three-Dimensional Boundary Layers
,”
Int. J. Heat Fluid Flow
,
21
(5), pp.
480
488
.10.1016/S0142-727X(00)00035-7
19.
Kuroda
,
A.
,
Kasagi
,
N.
, and
Hirata
,
M.
,
1995
, “
Direct Numerical Simulation of Turbulent Plane Couette-Poiseuille Flow: Effects of Mean Shear Rate on the Near-Wall Turbulence Structures
,”
Turbulent Shear Flows 9
,
Springer-Verlag
,
Berlin
, pp.
241
257
.
You do not currently have access to this content.