This study examines the effect of channel leak geometry on blast overpressure attenuation in the rear of a muzzle-loaded large caliber cannon. Effects of three primary geometric parameters including leak volume as well as number and length of channels are studied. Reduction in blast overpressure, and thus peak overpressure, is most influenced by the leak volume; however, leak volume needs to be selected carefully to limit the loss in the projectile exit velocity. Modification of the channel height in the current range has a minimal effect on peak overpressure, but the number of channels can have a significant effect due to the constriction experienced by the leaking flow, thereby limiting the attenuation. Two channel lengths are considered where the longer channel length, is found to be more effective. The best configuration showed over 50% reduction in peak overpressure at all monitored locations with about 4.8% loss in the projectile exit velocity.

References

References
1.
Schmidt
,
E. M.
,
Gion
,
E. J.
, and
Fansler
,
K. S.
,
1980
, “
Analysis of Weapon Parameters Controlling the Muzzle Blast Overpressure Field
,”
Proceedings of the 5th International Symposium on Ballistics
, Toulouse, France, Apr. 16–18.
2.
Klingenberg
,
G.
,
1977
, “
Investigation of Combustion Phenomena Associated With the Flow of Hot Propellant Gases–III: Experimental Survey of the Formation and Decay of Muzzle Flowfields and of Pressure Measurements
,”
Combust. Flame
,
29
(
3
), pp.
289
309
.10.1016/0010-2180(77)90120-1
3.
Pater
,
L. A.
, and
Shea
,
J. W.
,
1981
, “
Techniques for Reducing Gun Blast Noise Levels: An Experimental Study
,” Naval Surface Weapons Center, Technical Report No. NSWC TR 81-120.
4.
Phan
,
K. C.
,
1987
, “
On the Use of a Shock Tube as a Blast Simulator to Study the Performance of Muzzle Brake Devices
,” Royal Armament Research and Development Establishment, Fort Halstead, UK, Report No. RARDE 7/87.
5.
Phan
,
K. C.
, and
Hurdle
,
C. V.
,
1989
, “
The Use of a Light Gas Gun as a Blast Simulator
,”
Proceedings of the 11th International Symposium on Ballistics
,
Royal Military Academy
,
Brussels, Belgium
, May 9–11.
6.
Klingenburg
,
G.
,
Schmolinske
,
E.
,
Mach
,
H.
, and
Seiler
,
F.
,
1985
, “
Flow Simulation Experiments in Ballistics
,”
J. Ballist.
,
8
(
4
), pp.
2089
2117
.
7.
Oertel
,
F.
,
1974
, “
Clean Simulators for Muzzle Blast
,”
Proceedings of the 1st International Symposium on Ballistics
,
American Defense Preparedness Association
,
Orlando, Florida
, Nov. 13–15.
8.
Oertel
,
F.
,
1974
, “
Laser Interferometry of Unsteady, Underexpanded Jets
,” U. S. Army Ballistic Research Lab, Aberdeen Proving Ground, MD, Report No. R-1964.
9.
Erdos
,
J. I.
, and
Del Guidice
,
P. D.
,
1975
, “
Calculation of Muzzle Blast Flowfields
,”
AIAA J.
,
13
(
8
), pp.
1048
1055
.10.2514/3.60503
10.
Maillie
,
F. H.
,
1973
, “
Finite Difference Calculations of the Free-Air Blast Field About the Muzzle of a Simple Brake of a 155-mm Howitzer
,” Naval Surface Weapons Center, Dahlgren, VA, Report No. TR-2938.
11.
Maillie
,
F. H.
,
1973
, “
Numerical Calculation of a 105-mm Gun Blast With Projectile
,” Naval Surface Weapons Center, Dahlgren, VA, Report No. TR-3002.
12.
Wang
,
J. C. T.
, and
Widhopf
,
G. F.
,
1990
, “
Numerical Simulation of Blast Flowfields Using a High Resolution TVD Finite Volume Scheme
,”
Comput. Fluids
,
18
(
1
), pp.
103
137
.10.1016/0045-7930(90)90005-I
13.
Cooke
,
C. H.
, and
Fansler
,
K. S.
,
1989
, “
Comparison With Experiment for TVD Calculations of Blast Waves From a Shock Tube
,”
Numer. Methods Fluids
,
9
(
1
), pp.
9
22
.10.1002/fld.1650090103
14.
Schmidt
,
E. M.
, and
Duffy
,
S. J.
,
1985
, “
Noise From Shock Tube Facilities
,” 23rd
AIAA
Aerospace Sciences Meeting
.10.2514/6.1985-49
15.
Jiang
,
Z.
,
Takayama
,
K.
, and
Skews
,
B. W.
,
1998
, “
Numerical Study on Blast Flowfields Induced by Supersonic Projectiles Discharged From Shock Tubes
,”
Phys. Fluids
,
10
(
1
), p.
277
.10.1063/1.869566
16.
Widhopf
,
G. F.
,
Buell
,
J. C.
, and
Schmidt
,
E. M.
,
1982
, “
Time Dependent Near-Field Muzzle Brake Flow Simulations
,”
AIAA/ASME
3rd Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference
, St. Louis, MS, Paper No. AIAA-82-0973.10.2514/6.1982-973
17.
Buell
,
J. C.
, and
Widhopf
,
G. F.
,
1984
, “
Three-Dimensional Simulation of Muzzle Brake Flowfields
,”
AIAA
Paper No. 84-1641.10.2514/6.1984-1641
18.
Carofano
,
G. C.
,
1990
, “
A Comparison of Experimental and Numerical Blast Data for Perforated Muzzle Brakes
,” U.S. Army Armament Research, Development and Engineering Center, Technical Report No. ARCCB-TR-90034.
19.
Carofano
,
G. C.
,
1993
, “
Perforated Brake Efficiency Measurements Using a 20-mm Cannon
,” U. S. Army Armament Research, Development and Engineering Center, Technical Report No. ARCCB-TR-93010.
20.
Kang
,
K.-J.
,
Ko
,
S.-H.
, and
Lee
,
D.-S.
,
2008
, “
A Study on Impulsive Attenuation for High-Pressure Blast Flowfield
,”
J. Mech. Sci. Technol.
,
22
(
1
), pp.
190
200
.10.1007/s12206-007-1023-8
21.
Rehman
,
H.
,
Hwang
,
S. H.
,
Fajar
,
B.
,
Chung
,
H.
, and
Jeong
,
H.
,
2011
, “
Analysis and Atenuation of Impulsive Sound Pressure in a Large Caliber Weapon During Muzzle Blast
,”
J. Mech. Sci. Technol.
,
25
(
10
), pp.
2601
2606
.10.1007/s12206-011-0731-2
22.
Rehman
,
H.
,
Chung
,
H.
,
Joung
,
T.
,
Suwono
,
A.
, and
Jeong
,
H.
,
2011
, “
CFD Analysis of Sound Pressure in Tank Gun Muzzle Silencer
,”
J. Cent. South Univ. Technol.
,
18
(
6
), pp.
2015
2020
.10.1007/s11771-011-0936-7
23.
Zhang
,
H.
,
Chen
,
Z.
,
Jiang
,
X.
, and
Li
,
H.
,
2013
, “
Investigations on the Exterior Flow Field and the Efficiency of the Muzzle Brakes
,”
J. Mech. Sci. Technol.
,
27
(
1
), pp.
95
101
.10.1007/s12206-012-1223-8
24.
Klingenberg
,
G.
, and
Heimerl
,
J. M.
,
1992
,
Gun Muzzle Blast and Flash
,
AIAA
,
Washington, DC
.
25.
Carson
,
R. A.
, and
Sahni
,
O.
,
2014
, “
Numerical Investigation of Propellant Leak Methods in Large Caliber Cannons for Blast Overpressure Attenuation
,”
Shock Waves
(submitted).10.1007/s00193-014-0522-7
26.
Carson
,
R. A.
, and
Sahni
,
O.
,
2013
, “
Plume-in-Plume Blast Attenuator
,”
Proceedings of the 27th International Symposium on Ballistics
, Freiburg, Germany, Apr. 22–26.
27.
Nichols
,
A. L.
,
2010
, “
Users Manual for ALE3D, Vol. 1
,” Lawrence Livermore National Laboratory, Report No. LLNL-SM-433954.
28.
Nichols
,
A. L.
,
2010
, “
Users Manual for ALE3D, Vol. 2
,” Lawrence Livermore National Laboratory, Report No. LLNL-SM-433954.
29.
Hydrodynamics Challenge Problem, Lawrence Livermore National Laboratory, Report No. LLNL-TR-490254.
30.
Benson
,
D.
,
1992
, “
Computational Methods in Lagrangian and Eulerian Hydrocodes
,”
Comput. Methods Appl. Mech. Eng.
,
99
(
2–3
), pp.
235
394
.10.1016/0045-7825(92)90042-I
31.
Noh
,
W. F.
,
1964
, “
CEL: A Time-Dependent, Two-Space-Dimensional, Coupled Euler-Lagrange Code
,” Methods in Computational Physics (3rd Edition), Vol. 3, Academic Press, New York, pp.
117
179
.
32.
Kuhl
,
A. L.
,
2010
, “
Thermodynamic States in Explosion Fields
,”
LLNL-CONF-418405, 14th International Detonation Symposium
, Coeur d'Alene, ID, Apr. 11–16.
33.
Fried
,
L. E.
,
Howard
,
W. M.
, and
Souers
,
P. C.
,
1998
, “
CHEETAH 2.0 User's Manual
,” Lawrence Livermore National Laboratory, Report No. UCRL–MA–117541 Rev. 5.
34.
Christensen
,
R. B.
,
1990
, “
Godunov Methods on a Staggered Mesh–An Improved Artificial Viscosity
,”
Proceedings of the Nuclear Explosives Code Development Conference
, Monterey, CA, Nov. 6–9.
35.
Sandia National Laboratories,
2012
, “
The CUBIT Tool Suite
,” Accessed April 17, 2013, https://cubit.sandia.gov/
36.
Kenneth Kuo, Penn State University, Email Correspondence, May 30,
2013
.
37.
Rajkowski
,
E. V.
,
1993
, “Alternate Increment Container for the 120-mm Mortar Enhanced Ammunition,” Test Report No. AD-B173 029 (CSTA-7417), Aberdeen Proving Ground, Aberdeen, MD.
You do not currently have access to this content.