Cavitating and bubbly flows are encountered in many engineering problems involving propellers, pumps, valves, ultrasonic biomedical applications, etc. In this contribution, an openmp parallelized Euler–Lagrange model of two-phase flow problems and cavitation is presented. The two-phase medium is treated as a continuum and solved on an Eulerian grid, while the discrete bubbles are tracked in a Lagrangian fashion with their dynamics computed. The intimate coupling between the two description levels is realized through the local void fraction, which is computed from the instantaneous bubble volumes and locations, and provides the continuum properties. Since, in practice, any such flows will involve large numbers of bubbles, schemes for significant speedup are needed to reduce computation times. We present here a shared-memory parallelization scheme combining domain decomposition for the continuum domain and number decomposition for the bubbles; both selected to realize maximum speedup and good load balance. The Eulerian computational domain is subdivided based on geometry into several subdomains, while for the Lagrangian computations, the bubbles are subdivided based on their indices into several subsets. The number of fluid subdomains and bubble subsets matches with the number of central processing unit (CPU) cores available in a shared-memory system. Computation of the continuum solution and the bubble dynamics proceeds sequentially. During each computation time step, all selected openmp threads are first used to evolve the fluid solution, with each handling one subdomain. Upon completion, the openmp threads selected for the Lagrangian solution are then used to execute the bubble computations. All data exchanges are executed through the shared memory. Extra steps are taken to localize the memory access pattern to minimize nonlocal data fetch latency, since severe performance penalty may occur on a nonuniform memory architecture (NUMA) multiprocessing system where thread access to nonlocal memory is much slower than to local memory. This parallelization scheme is illustrated on a typical nonuniform bubbly flow problem, cloud bubble dynamics near a rigid wall driven by an imposed pressure function (Ma et al., 2013, “Euler–Lagrange Simulations of Bubble Cloud Dynamics Near a Wall,” International Mechanical Engineering Congress and Exposition, San Diego, CA, Nov. 15–21, Paper No. IMECE2013-65191 and Ma et al., 2015, “Euler–Lagrange Simulations of Bubble Cloud Dynamics Near a Wall,” ASME J. Fluids Eng., 137(4), p. 041301).

References

References
1.
Ma
,
J.
,
Hsiao
,
C.-T.
, and
Chahine
,
G. L.
,
2013
, “
Euler–Lagrange Simulations of Bubble Cloud Dynamics Near a Wall
,”
International Mechanical Engineering Congress and Exposition
,
San Diego, CA
, Nov. 15–21, Paper No. IMECE2013-65191.
2.
Ma
,
J.
,
Hsiao
,
C.-T.
, and
Chahine
,
G. L.
,
2015
, “
Euler–Lagrange Simulations of Bubble Cloud Dynamics Near a Wall
,”
ASME J. Fluids Eng.
,
137
(
4
), p.
041301
.10.1115/1.4028853
3.
Plesset
,
M. S.
, and
Prosperetti
,
A.
,
1977
, “
Bubble Dynamics and Cavitation
,”
Annu. Rev. Fluid Mech.
,
9
, pp.
145
185
.10.1146/annurev.fl.09.010177.001045
4.
Blake
,
J. R.
, and
Gibson
,
D. C.
,
1987
, “
Bubble Dynamics and Cavitation
,”
Annu. Rev. Fluid Mech.
,
19
(
1
), pp.
99
123
.10.1146/annurev.fl.19.010187.000531
5.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
New York
.
6.
Crowe
,
C. T.
,
Troutt
,
T. R.
, and
Chung
,
J. N.
,
1996
, “
Numerical Models for Two-Phase Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
28
, pp.
11
43
.10.1146/annurev.fl.28.010196.000303
7.
Chahine
,
G. L.
,
2009
, “
Numerical Simulation of Bubble Flow Interactions
,”
J. Hydrodyn.
,
21
(
3
), pp.
316
332
.10.1016/S1001-6058(08)60152-3
8.
Balachandar
,
S.
, and
Eaton
,
J. K.
,
2010
, “
Turbulent Dispersed Multiphase Flow
,”
Annu. Rev. Fluid Mech.
,
42
, pp.
111
133
.10.1146/annurev.fluid.010908.165243
9.
van Wijngaarden
,
L.
,
1966
, “
On the Collective Collapse of a Large Number of Gas Bubbles in Water
,”
Proceedings of the 11th International Congress of Applied Mechanics
,
Springer
,
Berlin
, pp.
854
861
.
10.
Morch
,
K. A.
,
1981
, “
Cavity Cluster Dynamics and Cavitation Erosion
,” ASME Proceeding of the Cavitation and Polyphase Flow Forum, Boulder, CO, June 22–24, pp. 1–10.
11.
Chahine
,
G. L.
,
1983
, “
Cloud Cavitation: Theory
,”
Proceedings of the 14th Symposium on Naval Hydrodynamics, National Academy Press
, Ann Arbor, MI, pp.
165
194
.
12.
Chahine
,
G. L.
, and
Liu
,
H.-L.
,
1985
, “
A Singular Perturbation Theory of the Growth of a Bubble Cluster in a Superheated Liquid
,”
J. Fluid Mech.
,
156
, pp.
257
279
.10.1017/S0022112085002087
13.
Chahine
,
G. L.
, and
Duraiswami
,
R.
,
1992
, “
Dynamical Interaction in a Multi-Bubble Cloud
,”
ASME J. Fluids Eng.
,
114
(
4
), pp.
680
686
.10.1115/1.2910085
14.
Esmaeeli
,
A.
, and
Tryggvason
,
G.
,
1998
, “
Direct Numerical Simulations of Bubbly Flows. Part 1. Low Reynolds Number Array
,”
J. Fluid Mech.
,
377
, pp.
313
345
.10.1017/S0022112098003176
15.
Lu
,
J.
,
Biswas
,
S.
, and
Tryggvason
,
G.
,
2006
, “
A DNS Study of Laminar Bubbly Flows in a Vertical Channel
,”
Int. J. Multiphase Flow
,
32
(6), pp.
643
660
.10.1016/j.ijmultiphaseflow.2006.02.003
16.
Calvisi
,
M. L.
,
Iloreta
,
J. I.
, and
Szeri
,
A. J.
,
2008
, “
Dynamics of Bubbles Near a Rigid Surface Subjected to a Lithotripter Shock Wave. Part 2. Reflected Shock Intensifies Nonspherical Cavitation Collapse
,”
J. Fluid Mech.
,
616
, pp.
63
97
.10.1017/S0022112008003054
17.
Seo
,
J. H.
,
Lele
,
S. K.
, and
Tryggvason
,
G.
,
2010
, “
Investigation and Modeling of Bubble-Bubble Interaction Effect in Homogeneous Bubbly Flows
,”
Phys. Fluids
,
22
(6), p.
063302
.10.1063/1.3432503
18.
Wang
,
Q.
,
2014
, “
Multi-Oscillations of a Bubble in a Compressible Liquid Near a Rigid Boundary
,”
J. Fluid Mech.
,
745
, pp.
509
536
.10.1017/jfm.2014.105
19.
Peng
,
G.
,
Tryggvason
,
G.
, and
Shimizu
,
S.
,
2015
, “
Two-Dimensional Direct Numerical Simulation of Bubble Cloud Cavitation by Front-Tracking Method
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
72
(
1
), p.
012001
.10.1088/1757-899X/72/1/012001
20.
Gilmore
,
F. R.
,
1952
, “
The Growth and Collapse of a Spherical Bubble in a Viscous Compressible Liquid
,” California Institute of Technology, Hydrodynamics Laboratory Report No. 26-4.
21.
Drew
,
D. A.
, and
Passman
,
S.
,
1999
,
Theory of Multicomponent Fluids
,
Springer
,
Berlin
10.1007/b97678.
22.
Prosperetti
,
A.
,
Sundaresan
,
S.
,
Pannala
,
S.
, and
Zhang
,
D. Z.
,
2007
, “
Segregated Methods for Two-Fluid Models
,”
Computational Methods for Multiphase Flow
,
Cambridge University Press
,
New York
, pp.
320
385
10.1017/CBO9780511607486.011.
23.
Tamura
,
Y.
, and
Matsumoto
,
Y.
,
2009
, “
Improvement of Bubble Model for Cavitating Flow Simulations
,”
J. Hydrodyn., Ser. B
,
21
(
1
), pp.
41
46
.10.1016/S1001-6058(08)60117-1
24.
Peng
,
G.
, and
Shimizu
,
S.
,
2013
, “
Progress in Numerical Simulation of Cavitating Water Jets
,”
J. Hydrodyn., Ser. B
,
25
(
4
), pp.
502
509
.10.1016/S1001-6058(11)60389-3
25.
Ma
,
J.
,
Oberari
,
A.
,
Drew
,
D.
,
Lahey
,
R.
, Jr.
, and
Moraga
,
J.
,
2010
, “
A Quantitative Sub-Grid Air Entrainment Model for Bubbly Flows—Plunging Jet
,”
J. Comput. Fluids
,
39
(
1
), pp.
77
86
.10.1016/j.compfluid.2009.07.004
26.
Ma
,
J.
,
Oberai
,
A.
,
Hyman
,
M.
,
Drew
,
D. A.
, and
Lahey
,
R. T.
, Jr.
,
2011
, “
Two-Fluid Modeling of Bubbly Flows Around Surface Ships Using a Phenomenological Subgrid Air Entrainment Model
,”
Comput. Fluids
,
52
, pp.
50
57
.10.1016/j.compfluid.2011.08.015
27.
Xiang
,
M.
,
Cheung
,
S. C. P.
,
Tu
,
J. Y.
, and
Zhang
,
W. H.
,
2010
, “
On the Numerical Study of Bubbly Wakes Generated by Ventilated Cavity Using Population Balance Approach
,”
J. Comput. Multiphase Flows
,
2
(
2
), pp.
101
117
.10.1260/1757-482X.2.2.101
28.
Ma
,
J.
,
Oberai
,
A.
,
Drew
,
D. A.
, and
Lahey
,
R. T.
, Jr.
,
2012
, “
A Two-Way Coupled Polydispersed Two-Fluid Model for the Simulation of Air Entrainment Beneath a Plunging Liquid Jet
,”
ASME J. Fluids Eng.
,
134
(
10
), p.
101304
.10.1115/1.4007335
29.
Elghobashi
,
S.
, and
Truesdell
,
G.
,
1993
, “
On the Two-Way Interaction Between Homogeneous Turbulence and Dispersed Solid Particles. I: Turbulence Modification
,”
Phys. Fluids A: Fluid Dyn.
5
(7), pp.
1790
1801
.10.1063/1.858854
30.
Spelt
,
P. D. M.
, and
Biesheivel
,
A.
,
1997
, “
On the Motion of Gas Bubbles in Homogeneous Isotropic Turbulence
,”
J. Fluid Mech.
,
336
, pp.
221
244
.10.1017/S0022112096004739
31.
Hsiao
,
C.-T.
,
Chahine
,
G. L.
, and
Liu
,
H.-L.
,
2003
, “
Scaling Effects on Prediction of Cavitation Inception in a Line Vortex Flow
,”
J. Fluid Eng.
,
125
(1), pp.
53
60
.10.1115/1.1521956
32.
Mattson
,
M. D.
, and
Mahesh
,
K.
,
2012
, “
A One-Way Coupled, Euler–Lagrangian Simulation of Bubble Coalescence in a Turbulent Pipe Flow
,”
Int. J. Multiphase Flow
,
40
, pp.
68
82
.10.1016/j.ijmultiphaseflow.2011.11.013
33.
Raju
,
R.
,
Singh
,
S.
,
Hsiao
,
C.-T.
, and
Chahine
,
G. L.
,
2011
, “
Study of Pressure Wave Propagation in a Two-Phase Bubbly Mixture
,”
ASME J. Fluids Eng
,
133
(12), p.
121302
.10.1115/1.4005263
34.
Ma
,
J.
,
Singh
,
S.
,
Hsiao
,
C.-T.
,
Choi
,
J.-K.
, and
Chahine
,
G. L.
,
2012
, “
Spherical Bubble Dynamics in a Bubbly Medium
,”
International Conference on Numerical Methods in Multiscale Flows
,
Philadelphia, PA
, June 12–14.
35.
Ma
,
J.
,
Chahine
,
G. L.
, and
Hsiao
,
C.-T.
,
2015
, “
Spherical Bubble Dynamics in a Bubbly Medium Using an Euler–Lagrange Model
,”
Chem. Eng. Sci.
,
128
, pp.
64
81
.10.1016/j.ces.2015.01.056
36.
Darmana
,
D.
,
Deen
,
N. G.
, and
Kuipers
,
J. A. M.
,
2006
, “
Parallelization of an Euler–Lagrange Model Using Mixed Domain Decomposition and a Mirror Domain Technique: Application to Dispersed Gas–Liquid Two-Phase Flow
,”
J. Comput. Phys.
,
220
(
1
), pp.
216
248
.10.1016/j.jcp.2006.05.011
37.
Yakubov
,
S.
,
Cankurt
,
B.
,
Abdel-Maksoud
,
M.
, and
Rung
,
T.
,
2013
, “
Hybrid MPI/OpenMP Parallelization of an Euler–Lagrange Approach to Cavitation Modelling
,”
Comput. Fluids
,
80
, pp.
365
371
.10.1016/j.compfluid.2012.01.020
38.
Xu
,
M.
,
Chen
,
F.
,
Liu
,
X.
,
Ge
,
W.
, and
Li
,
J.
,
2012
, “
Discrete Particle Simulation of Gas–Solid Two-Phase Flows With Multi-Scale CPU–GPU Hybrid Computation
,”
Chem. Eng. J.
,
207–208
(
1
), pp.
746
757
.10.1016/j.cej.2012.07.049
39.
Amritkar
,
A.
,
Deb
,
S.
, and
Tafti
,
D.
,
2014
, “
Efficient Parallel CFD-DEM Simulations Using OpenMP
,”
J. Comput. Phys.
,
256
, pp.
501
519
10.1016/j.jcp.2013.09.007
40.
Liu
,
H.
,
Tafti
,
D. K.
, and
Li
,
T.
,
2014
, “
Hybrid Parallelism in MFIX CFD-DEM Using OpenMP
,”
Powder Technol.
,
259
, pp.
22
29
.10.1016/j.powtec.2014.03.047
41.
Hsiao
,
C.-T.
, and
Chahine
,
G. L.
,
2012
, “
Effect of a Propeller and Gas Diffusion on Bubble Nuclei Distribution in a Liquid
,”
J. Hydrodyn., Ser. B
,
24
(6), pp.
809
822
.10.1016/S1001-6058(11)60308-9
42.
Hsiao
,
C.-T.
, and
Chahine
,
G. L.
,
2004
, “
Prediction of Tip Vortex Cavitation Inception Using Coupled Spherical and Nonspherical Bubble Models and Navier–Stokes Computations
,”
J. Mar. Sci. Technol.
,
8
(
3
), pp.
99
108
.10.1007/s00773-003-0162-6
43.
Hsiao
,
C.-T.
, and
Chahine
,
G.
,
2008
, “
Numerical Study of Cavitation Inception Due to Vortex/Vortex Interaction in a Ducted Propulsor
,”
J. Ship Res.
,
52
(2), pp.
114
123
.
44.
Wu
,
X.
,
Choi
,
J.-K.
,
Hsiao
,
C.-T.
, and
Chahine
,
G. L.
,
2010
, “
Bubble Augmented Waterjet Propulsion: Numerical and Experimental Studies
,”
28th Symposium on Naval Hydrodynamics
.
45.
Hsiao
,
C. T.
,
Wu
,
X.
,
Ma
,
J.
, and
Chahine
,
G. L.
,
2013
, “
Numerical and Experimental Study of Bubble Entrainment Due to a Horizontal Plunging Jet
,”
Int. Shipbuild. Prog.
,
60
(1–4), pp.
435
469
10.3233/ISP-130093.
46.
van Wijngaarden
,
L.
,
1968
, “
On the Equations of Motion for Mixtures of Liquid and Gas Bubbles
,”
J. Fluid Mech.
,
33
(
3
), pp.
465
474
.10.1017/S002211206800145X
47.
van Wijngaarden
,
L.
,
1972
, “
One-Dimensional Flow of Liquids Containing Small Gas Bubbles
,”
Annu. Rev. Fluid Mech.
,
4
, pp.
369
396
.10.1146/annurev.fl.04.010172.002101
48.
Commander
,
K. W.
, and
Prosperetti
,
A.
,
1989
, “
Linear Pressure Waves in Bubbly Liquids: Comparison Between Theory and Experiments
,”
J. Acoust. Soc. Am.
,
85
(
2
), pp.
732
746
.10.1121/1.397599
49.
Brennen
,
C. E.
,
2005
,
Fundamentals of Multiphase Flow
,
Cambridge University Press
,
New York
.10.1017/CBO9780511807169
50.
Chorin
,
A. J.
,
1967
, “
A Numerical Method for Solving Incompressible Viscous Flow Problems
,”
J. Comput. Phys.
,
2
, pp.
12
26
.10.1016/0021-9991(67)90037-X
51.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
, pp.
357
372
.10.1016/0021-9991(81)90128-5
52.
Van Leer
,
B.
,
Thomas
,
J. L.
,
Roe
,
P. L.
, and
Newsome
,
R. W.
,
1987
, “
A Comparison of Numerical Flux Formulas for the Euler and Navier–Stokes Equation
,”
AIAA
Paper No. 87-1104-CP.10.2514/6.87-1104-CP
53.
Johnson
,
V. E.
, and
Hsieh
,
T.
,
1966
, “
The Influence of the Trajectories of Gas Nuclei on Cavitation Inception
,”
6th Symposium on Naval Hydrodynamics
, pp.
163
179
.
54.
Saffman
,
P.
,
1965
, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
J. Fluid Mech.
,
22
(
2
), pp.
385
400
.10.1017/S0022112065000824
55.
Haberman
,
W. L.
, and
Morton
,
R. K.
,
1953
, “
An Experimental Investigation of the Drag and Shape of Air Bubbles Rising in Various Liquids
,” DTMB, Report No. 802.
You do not currently have access to this content.