The micropressure wave radiated from a tunnel exit is one of the environmental problems which can be investigated from the temporal pressure gradient of the compression wave. The effects of inclined portals on the initial compression wave, specifically the maximum temporal pressure gradient, are numerically studied by solving the flow field during a high-speed train nose entering a tunnel, using the unsteady three-dimensional (3D) Euler equations. After mesh independency and temporal sensitivity tests of the numerical method, validations are conducted by comparing the numerical results with experimental and numerical data. The temporal gradients of pressure wavefront are parametrically investigated for different combinations among the train speed, the blockage ratio of the train to tunnel, and inclination angle of the tunnel entrance. The numerical results show a negligible influence of train Mach number or blockage ratio on the normalized pressure gradient and noticeable effects of inclination angle, location of the train with respect to the median line of a double-tracked tunnel (DT), and the profile of train nose. Based on the numerical results, an empirical formula is proposed to predict the relationship between the maximum pressure gradient and the inclination angle of tunnel entrance.

References

References
1.
Hara
,
T.
,
1961
, “
Aerodynamic Force Acting on a High Speed Train at Tunnel Entrance
,”
Bull. JSME
,
4
(
15
), pp.
547
553
.10.1299/jsme1958.4.547
2.
Ozawa
,
S.
, and
Maeda
,
T.
,
1988
, “
Model Experiment on Reduction of Micro-Pressure Wave Radiated From Tunnel Exit
,”
International Symposium Scale Modeling
, pp.
33
37
.
3.
Ozawa
,
S.
,
Maeda
,
T.
,
Matsumura
,
T.
,
Uchida
,
K.
,
Kajiyama
,
H.
, and
Tanemoto
,
K.
,
1991
, “
Countermeasures to Reduce Micro-Pressure Waves Radiating From Exits of Shinkansen Tunnels
,”
International Symposium on Aerodynamics and Ventilation of Vehicle Tunnels
, pp.
253
266
.
4.
Woods
,
W. A.
, and
Pope
,
C. W.
,
1976
, “
Secondary Aerodynamic Effects in Rail Tunnels During Vehicle Entry
,”
Second BHRA Symposium of the Aerodynamics and Ventilation of Vehicle Tunnels
, pp.
71
86
.
5.
Ozawa
,
S.
,
Maeda
,
T.
,
Matsumura
,
T.
, and
Uchida
,
K.
,
1993
, “
Effect of Ballast on Pressure Wave Propagating Through Tunnel
,”
International Conference on Speedup Technology for Railway and Maglev Vehicles
, Vol.
2
, pp.
299
304
.
6.
Ozawa
,
S.
,
Murata
,
K.
, and
Maeda
,
T.
,
1997
, “
Effect of Ballasted Track on Distortion of Pressure Wave in Tunnel and Emission of Micro-Pressure Wave
,”
BHR Group Conference Series Publication, Mechanical Engineering Publications Limited
, Vol.
27
, pp.
935
950
.
7.
Matschke
,
G.
, and
Heine
,
C.
,
2002
, “
Full Scale Tests on Pressure Wave Effects in Tunnels
,”
TRANSAERO–A European Initiative on Transient Aerodynamics for Railway System Optimisation
,
Springer
,
Berlin
, pp.
187
195
.10.1007/978-3-540-45854-8_15
8.
Ozawa
,
S.
,
Morito
,
Y.
,
Maeda
,
T.
, and
Kinosita
,
M.
,
1976
, “
Investigation of the Pressure Wave Radiated From a Tunnel Exit
,” Railway Technical Research Institute, Report No. 1023.
9.
Maeda
,
T.
,
2001
, “
Micropressure Waves Radiating From a Shinkansen Tunnel Portal
,”
Noise and Vibration from High-speed Trains
,
Thomas Telford
,
London
, pp.
187
211
.
10.
Raghunathan
,
R. S.
,
Kim
,
H. D.
, and
Setoguchi
,
T.
,
2002
, “
Aerodynamics of High-Speed Railway Train
,”
Prog. Aerosp. Sci.
,
38
(
6
), pp.
469
514
.10.1016/S0376-0421(02)00029-5
11.
Lighthill
,
M. J.
,
1952
, “
On Sound Generated Aerodynamically. I. General Theory
,”
Proc. R. Soc. A. Math. Phys.
,
211
(
1107
), pp.
564
587
.10.1098/rspa.1952.0060
12.
Kwon
,
H. B.
,
Jang
,
K. H.
,
Kim
,
Y. S.
,
Yee
,
K.-J.
, and
Lee
,
D.-H.
,
2001
, “
Nose Shape Optimization of High-Speed Train for Minimization of Tunnel Sonic Boom
,”
JSME Int. J. Ser. C
,
44
(
3
), pp.
890
899
.10.1299/jsmec.44.890
13.
Yoon
,
T.
, and
Lee
,
S.
,
2001
, “
Efficient Prediction Methods for the Micro-Pressure Wave From a High-Speed Train Entering a Tunnel Using the Kirchhoff Formulation
,”
J. Acoust. Soc. Am.
,
110
(
5
), pp.
2379
2389
.10.1121/1.1409374
14.
Howe
,
M. S.
,
Iida
,
M.
, and
Fukuda
,
T.
,
2003
, “
Influence of an Unvented Tunnel Entrance Hood on the Compression Wave Generated by a High-Speed Train
,”
J. Fluids Struct.
,
17
(
6
), pp.
833
853
.10.1016/S0889-9746(03)00011-2
15.
Uystepruyst
,
D.
,
William-Louis
,
M.
,
Creusé
,
E.
,
Nicaise
,
S.
, and
Monnoyer
,
F.
,
2011
, “
Efficient 3D Numerical Prediction of the Pressure Wave Generated by High-Speed Trains Entering Tunnels
,”
Comput. Fluids
,
47
(
1
), pp.
165
177
.10.1016/j.compfluid.2011.03.005
16.
Uystepruyst
,
D.
,
William-Louis
,
M.
, and
Monnoyer
,
F.
,
2013
, “
3D Numerical Design of Tunnel Hood
,”
Tunnelling Underground Space Technol.
,
38
, pp.
517
525
.10.1016/j.tust.2013.08.008
17.
Mok
,
J. K.
, and
Yoo
,
J.
,
2001
, “
Numerical Study on High Speed Train and Tunnel Hood Interaction
,”
J. Wind Eng. Ind. Aerodyn.
,
89
(
1
), pp.
17
29
.10.1016/S0167-6105(00)00021-0
18.
Vardy
,
A. E.
, and
Brown
,
J. M. B.
,
2003
, “
Transient Turbulent Friction in Smooth Pipe Flows
,”
J. Sound Vib.
,
259
(
5
), pp.
1011
1036
.10.1006/jsvi.2002.5160
19.
Vardy
,
A. E.
, and
Brown
,
J. M. B.
,
2004
, “
Transient Turbulent Friction in Fully Rough Pipe Flows
,”
J. Sound Vib.
,
270
(
1
), pp.
233
257
.10.1016/S0022-460X(03)00492-9
20.
Fukuda
,
T.
,
Saito
,
H.
,
Miyachi
,
T.
,
Kikuchi
,
K.
, and
Iida
,
M.
,
2012
, “
Model Experiments on the Tunnel Compression Wave Using an Axisymmetric and Three-Dimensional Train Model
,”
Noise and Vibration Mitigation for Rail Transportation Systems
,
Springer
, Tokyo, pp.
397
404
.10.1007/978-4-431-53927-8_47
21.
Howe
,
M. S.
,
Iida
,
M.
,
Fukuda
,
T.
, and
Maeda
,
T.
,
2000
, “
Theoretical and Experimental Investigation of the Compression Wave Generated by a Train Entering a Tunnel With a Flared Portal
,”
J. Fluid Mech.
,
425
, pp.
111
132
.10.1017/S0022112000002093
22.
Liu
,
T.
,
Tian
,
H.
, and
Liang
,
X.
,
2010
, “
Design and Optimization of Tunnel Hoods
,”
Tunnelling Underground Space Technol.
,
25
(
3
), pp.
212
219
.10.1016/j.tust.2009.12.001
23.
Winslow
,
A.
, and
Howe
,
M. S.
,
2005
, “
Stepwise Approximation of an Optimally Flared Tunnel Portal
,”
J. Sound Vib.
,
280
(
3
), pp.
983
995
.10.1016/j.jsv.2004.01.039
24.
Roe
,
P. L.
,
1986
, “
Characteristic-Based Schemes for the Euler Equations
,”
Annu. Rev. Fluid Mech.
,
18
(
1
), pp.
337
365
.10.1146/annurev.fl.18.010186.002005
25.
Thompson
,
K. W.
,
1987
, “
Time Dependent Boundary Conditions for Hyperbolic Systems
,”
J. Comput. Phys.
,
68
(
1
), pp.
1
24
.10.1016/0021-9991(87)90041-6
26.
Thompson
,
K. W.
,
1990
, “
Time-Dependent Boundary Conditions for Hyperbolic Systems, II
,”
J. Comput. Phys.
,
89
(
2
), pp.
439
461
.10.1016/0021-9991(90)90152-Q
27.
Sutherland
,
I. E.
, and
Hodgman
,
G. W.
,
1974
, “
Reentrant Polygon Clipping
,”
Commun. ACM
,
17
(
1
), pp.
32
42
.10.1145/360767.360802
28.
Ogawa
,
T.
, and
Fujii
,
K.
,
1997
, “
Numerical Investigation of Three-Dimensional Compressible Flows Induced by a Train Moving Into a Tunnel
,”
Comput. Fluids
,
26
(
6
), pp.
565
585
.10.1016/S0045-7930(97)00008-X
29.
Maeda
,
T.
,
Matsumura
,
T.
,
Iida
,
M.
,
Nakatani
,
K.
, and
Uchida
,
K.
,
1993
, “
Effect of Shape of Train Nose on Compression Wave Generated by Train Entering Tunnel
,”
International Conference on Speedup Technology for Railway and Maglev Vehicles
, Vol.
2
, pp.
315
319
.
30.
Ricco
,
P.
,
Baron
,
A.
, and
Molteni
,
P.
,
2007
, “
Nature of Pressure Waves Induced by a High-Speed Train Travelling Through a Tunnel
,”
J. Wind Eng. Ind. Aerodyn.
,
95
(
8
), pp.
781
808
.10.1016/j.jweia.2007.01.008
31.
Morimura
,
T.
, and
Seki
,
M.
,
2005
, “
The Process of Achieving 270 km/H Operation for Tokaido Shinkansen—Part 2: Technology Development
,”
Proc. Inst. Mech. Eng., Part F
,
219
(
1
), pp.
27
43
.10.1243/095440905X8772
32.
Heine
,
D.
, and
Ehrenfried
,
K.
,
2014
, “
Experimental Study of the Pressure Rise Due to Tunnel Entry of a High-Speed Train
,”
New Results in Numerical and Experimental Fluid Mechanics IX
,
Springer International Publishing
, Cham, Switzerland, pp.
335
342
.10.1007/978-3-319-03158-3_34
You do not currently have access to this content.