The tip leakage vortex (TLV) cavitating flow in an axial flow pump was simulated based on an improved shear stress transport (SST) k-ω turbulence model and the homogeneous cavitation model. The generation and dynamics of the TLV cavitation throughout the blade cascades at different cavitation numbers were investigated by the numerical and experimental visualizations. The investigation results show that the corner vortex cavitation in the tip clearance is correlated with the reversed flow at the pressure side (PS) corner of blade, and TLV shear layer cavitation is caused by the interaction between the wall jet flow in the tip and the main flow in the impeller. The TLV cavitation patterns including TLV cavitation, tip corner vortex cavitation, shear layer cavitation, and blowing cavitation are merged into the unstable large-scale TLV cloud cavitation at critical cavitation conditions, which grows and collapses periodically near trailing edge (TE).

References

References
1.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Fifth International Conference on Multiphase Flow
,
Yokohama, Japan
.
2.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
,
2001
, “
Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex
,”
ASME J. Turbomach.
,
123
(
3
), pp.
453
460
.10.1115/1.1370160
3.
Lee
,
J. H.
,
Han
,
J. M.
,
Park
,
H. G.
, and
Seo
,
J. S.
,
2013
, “
Application of Signal Processing Techniques to the Detection of Tip Vortex Cavitation Noise in Marine Propeller
,”
J. Hydrodyn.
,
25
(
3
), pp.
440
449
.10.1016/S1001-6058(11)60383-2
4.
Tan
,
C. S.
,
Day
,
I.
,
Morris
,
S.
, and
Wadia
,
A.
,
2010
, “
Spike-Type Compressor Stall Inception, Detection, and Control
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
275
300
.10.1146/annurev-fluid-121108-145603
5.
Abdel-Maksoud
,
M.
,
Hanel
,
D.
, and
Lantermann
,
U.
,
2010
, “
Modeling and Computation of Cavitation in Vortical Flow
,”
Int. J. Heat Fluid Flow
,
31
(
6
), pp.
1065
1074
.10.1016/j.ijheatfluidflow.2010.05.010
6.
Zhang
,
D. S.
,
Shi
,
W. D.
,
Wu
,
S. Q.
, and
Pan
,
D. Z.
,
2013
, “
Numerical and Experimental Investigation of Tip Leakage Vortex Trajectory in an Axial Flow Pump
,”
ASME
Paper No. FEDSM2013-16058. 10.1115/FEDSM2013-16058
7.
Zhang
,
D. S.
,
Pan
,
D. Z.
,
Shi
,
W. D.
,
Wu
,
S. Q.
, and
Shao
,
P. P.
,
2013
, “
Study on Tip Leakage Vortex in an Axial Flow Pump Based on Modified Shear Stress Transport K-Omega Turbulence Model
,”
Therm. Sci.
,
17
(
5
), pp.
1551
1555
.10.2298/TSCI1305551Z
8.
Laborde
,
R.
,
Chantrel
,
P.
, and
Mory
,
M.
,
1997
, “
Tip Clearance and Tip Vortex Cavitation in an Axial Flow Pump
,”
ASME J. Fluids Eng.
,
119
(
3
), pp.
680
685
.10.1115/1.2819298
9.
Dreyer
,
M.
,
Decaix
,
J.
,
Münch-Alligné
,
C.
, and
Farhat
,
M.
,
2014
, “
Mind the Gap: A New Insight Into the Tip Leakage Vortex Using Stereo-PIV
,”
Exp. Fluids
,
55
(
11
), p.
1849
.10.1007/s00348-014-1849-7
10.
Wu
,
H.
,
Miorini
,
R. L.
, and
Katz
,
J.
,
2010
, “
Measurements of the Tip Leakage Vortex Structures and Turbulence in the Meridional Plane of an Axial Water-Jet Pump
,”
Exp. Fluids
,
50
(
4
), pp.
989
1003
.10.1007/s00348-010-0975-0
11.
Wu
,
H.
,
Tan
,
D.
,
Miorini
,
R. L.
, and
Katz
,
J.
,
2011
, “
Three-Dimensional Flow Structures and Associated Turbulence in the Tip Region of a Waterjet Pump Rotor Blade
,”
Exp. Fluids
,
51
(
6
), pp.
1721
1737
.10.1007/s00348-011-1189-9
12.
Wu
,
H. X.
,
Miorini
,
R. L.
,
Tan
,
D.
, and
Katz
,
J.
,
2012
, “
Turbulence Within the Tip-Leakage Vortex of an Axial Waterjet Pump
,”
AIAA J.
,
50
(
11
), pp.
2574
2587
.10.2514/1.J051491
13.
Miorini
,
R. L.
,
Wu
,
H.
, and
Katz
,
J.
,
2012
, “
The Internal Structure of the Tip Leakage Vortex Within the Rotor of an Axial Waterjet Pump
,”
ASME J. Turbomach.
,
134
(
3
), p.
031018
.10.1115/1.4003065
14.
ANSYS, Inc.
,
2012
,
ansys cfx Tutorials 14.5
.
15.
Menter
,
F. R.
,
2009
, “
Review of the Shear-Stress Transport Turbulence Model Experience From an Industrial Perspective
,”
Int. J. Comput. Fluid Dyn.
,
23
(
4
), pp.
305
316
.10.1080/10618560902773387
16.
Bardina
,
J. E.
,
Huang
,
P. G.
, and
Coakley
,
T. J.
,
1997
, “
Turbulence Modeling Validation, Testing, and Development
,” NASA Technical Report Memorandum No. 110446.
17.
Reboud
,
J. L.
,
Stutz
,
B.
, and
Coutier
,
O.
,
1998
, “
Two-Phase Flow Structure of Cavitation: Experiment and Modelling of Unsteady Effects
,”
Third International Symposium on Cavitation
, Grenoble, France.
18.
Dular
,
M.
,
Bachert
,
R.
,
Stoffel
,
B.
, and
Širok
,
B.
,
2005
, “
Experimental Evaluation of Numerical Simulation of Cavitating Flow Around Hydrofoil
,”
Eur. J. Mech., B: Fluids
,
24
(
4
), pp.
522
538
.10.1016/j.euromechflu.2004.10.004
19.
Leroux
,
J.-B.
,
Coutier-Delgosha
,
O.
, and
Astolfi
,
J. A.
,
2005
, “
A Joint Experimental and Numerical Study of Mechanisms Associated to Instability of Partial Cavitation on Two-Dimensional Hydrofoil
,”
Phys. Fluids
,
17
(
5
), p.
052101
.10.1063/1.1865692
20.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
,
2003
, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
38
45
.10.1115/1.1524584
21.
Coutier-Delgosha
,
O.
,
Courtot
,
Y.
,
Joussellin
,
F.
, and
Reboud
,
J. L.
,
2004
, “
Numerical Simulation of the Unsteady Cavitation Behavior of an Inducer Blade Cascade
,”
AIAA J.
,
42
(
3
), pp.
560
569
.10.2514/1.9110
22.
Ji
,
B.
,
Luo
,
X.
,
Peng
,
X.
,
Wu
,
Y.
, and
Xu
,
H.
,
2012
, “
Numerical Analysis of Cavitation Evolution and Excited Pressure Fluctuation Around a Propeller in Non-Uniform Wake
,”
Int. J. Multiphase Flow
,
43
, pp.
13
21
.10.1016/j.ijmultiphaseflow.2012.02.006
23.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
,
2002
, “
Simulation of Unsteady Cavitation With a Two-Equation Turbulence Model Including Compressibility Effects
,”
J. Turbul.
,
3
(
1
), pp.
58
65
.
24.
Liu
,
J. T.
,
Liu
,
S. H.
,
Wu
,
Y. L.
,
Jiao
,
L.
,
Wang
,
L. Q.
, and
Sun
,
Y. K.
,
2012
, “
Numerical Investigation of the Hump Characteristic of a Pump-Turbine Based on an Improved Cavitation Model
,”
Comput. Fluids
,
68
, pp.
105
111
.10.1016/j.compfluid.2012.08.001
25.
Li
,
Z. R.
,
2012
, “
Assessment of Cavitation Erosion With a Multiphase Reynolds-Averaged Navier–Stokes Method
,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
26.
Ji
,
B.
,
Luo
,
X.
,
Peng
,
X.
,
Wu
,
Y.
, and
Xu
,
H.
,
2012
, “
Numerical Analysis of Cavitation Evolution and Excited Pressure Fluctuation Around a Propeller in Non-uniform Wake
,”
Int. J. Multiphase Flow
,
43
, pp.
13
21
.10.1016/j.ijmultiphaseflow.2012.02.006
27.
Mejri
,
I.
,
Bakir
,
F.
,
Rey
,
R.
, and
Belamri
,
T.
,
2006
, “
Comparison of Computational Results Obtained From a Homogeneous Cavitation Model With Experimental Investigations of Three Inducers
,”
ASME J. Fluids Eng.
,
128
(
6
), pp.
1308
1323
.10.1115/1.2353265
28.
You
,
D.
,
Wang
,
M.
,
Moin
,
P.
, and
Mittal
,
R.
,
2006
, “
Effects of Tip-Gap Size on the Tip-Leakage Flow in a Turbomachinery Cascade
,”
Phys. Fluids
,
18
(
10
), p.
105102
.10.1063/1.2354544
29.
Vanka
,
S. P.
,
1986
, “
Block-Implicit Multigrid Solution of Navier–Stokes Equations in Primitive Variables
,”
J. Comput. Phys.
,
65
(
1
), pp.
138
158
.10.1016/0021-9991(86)90008-2
30.
Barth
,
T. J.
, and
Jesperson
,
D. C.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
AIAA
Paper No. 89-0366.10.2514/6.1989-366
31.
Wu
,
H.
,
Soranna
,
F.
,
Michael
,
T.
,
Katz
,
J.
, and
Jessup
,
S.
,
2008
, “
Cavitation in the Tip Region of the Rotor Blades Within a Waterjet Pump
,”
ASME
Paper No. FEDSM2008-55170. 10.1115/FEDSM2008-55170
32.
Tan
,
D. Y.
,
Miorini
,
R. L.
,
Keller
,
J.
, and
Katz
,
J.
,
2012
, “
Flow Visualization Using Cavitation Within Blade Passage of an Axial Waterjet Pump Rotor
,”
ASME
Paper No. FEDSM2012-72108. 10.1115/FEDSM2012-72108
33.
Jang
,
C.-M.
,
Furukawa
,
M.
, and
Inoue
,
M.
,
2001
, “
Analysis of Vortical Flow Field in a Propeller Fan by LDV Measurements and LES—Part I: Three-Dimensional Vortical Flow Structures
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
748
754
.10.1115/1.1412565
You do not currently have access to this content.