To stabilize the terminal normal shock on high-static pressure at outlet, called back-pressure pout, stability bleed slots are used in the throat of mixed-compression supersonic inlets. In this paper, a model for the functional relation between the bleed flow rate mbl and back-pressure pout is established based on a bleed flow rate model (BFRM) in order to study the effect of stability bleed on the back-pressure in mixed-compression supersonic inlets. Given the inlet flow parameters Min, pin*, and Tin*, the plenum pressure ppl at slots' outlet, the terminal normal shock position xs in this model, the bleed flow rate mbl, Mach number M¯out, and back-pressure pout were derived one by one from the basic laws of conservation. To study the effect of plenum pressure ppl on subsonic flow of the divergent section behind the terminal normal shock, a correction coefficient κ is introduced to modify the Mach number M¯out. Furthermore, numerical simulations based on Reynolds-Averaged Navier–Stokes equations were performed to analyze the functional relation between the bleed flow rate mbl and back-pressure pout. Computational fluid dynamics (CFD) results show that the present model agrees with the data.

References

References
1.
Seddon
,
J.
, and
Goldsmith
,
E. L.
,
1999
,
Intake Aerodynamics
,
Blackwell Science
,
London
.
2.
Simpson
,
R.
,
1981
, “
A Review of Some Phenomena in Turbulent Flow Separation
,”
ASME J. Fluids Eng.
,
103
(
4
), pp.
520
533
.10.1115/1.3241761
3.
Schwaab
,
Q.
, and
Weiss
,
J.
,
2014
, “
Evaluation of a Thermal-Tuft Probe for Turbulent Separating and Reattaching Flows
,”
ASME J. Fluids Eng.
,
137
(
1
), p.
011401
.10.1115/1.4027642
4.
Ono
,
D.
,
Handa
,
T.
, and
Masuda
,
M.
,
2013
, “
Three-Dimensional Normal Shock-Wave/Boundary-Layer Interaction in a Diffuser
,”
ASME J. Fluids Eng.
,
135
(
4
), p.
041105
.10.1115/1.4023657
5.
Soltani
,
M. R.
, and
Farahani
,
M.
,
2010
, “
Experimental Investigation of Flow Instability in a Supersonic Inlet
,”
ASME
Paper No. ESDA2010-24858.10.1115/ESDA2010-24858
6.
Wasistho
,
B.
,
2006
, “
Transpiration Induced Shock Boundary-Layer Interactions
,”
ASME J. Fluids Eng.
,
128
(
5
), pp.
976
986
.10.1115/1.2236127
7.
Nori
,
V.
,
Lerma
,
N.
,
Gustavsson
,
J.
,
Segal
,
C.
, and
Fernandez
,
R.
,
2006
, “
Forced Oscillations in a Mixed-Compression Inlet at Mach 3.5 for Pulse Detonation Engine Systems
,”
ASME J. Fluids Eng.
,
128
(
3
), pp.
494
506
.10.1115/1.2174061
8.
Hyungrok
,
D.
,
Seong-Kyun
,
I.
,
Mark
,
M.
, and
Mark
,
C.
,
2011
, “
The Influence of Boundary Layers on Supersonic Inlet Unstart
,”
AIAA
Paper No. 2011-2349.
9.
Mayer
,
D. W.
, and
Paynter
,
G. C.
,
1995
, “
Prediction of Supersonic Inlet Unstart Caused by Freestream Disturbances
,”
AIAA J.
,
33
(
2
), pp.
266
275
.10.2514/3.12418
10.
Rusty
,
B.
, and D, M.,
1993
, “
Numerical Simulations of the Unstart Phenomenon in a Supersonic Inlet/Diffuser
,”
29th Joint Propulsion Conference and Exhibit
, Monterey, CA.
11.
Juntao
,
C.
,
Daren
,
Y.
,
Wen
,
B.
, and
Liang
,
Q.
,
2008
, “
Influence Factors of Unstart Boundary for Hypersonic Inlets
,” AIAA Paper No. 2008-4586.10.1016/j.jmbbm.2014.12.006
12.
Ryu
,
K. J.
,
Lim
,
S.
, and
Song
,
D. J.
,
2011
, “
A Computational Study of the Effect of Angles of Attack on a Double-Cone Type Supersonic Inlet With a Bleeding System
,”
Comput. Fluids
,
50
(
1
), pp.
72
80
.10.1016/j.compfluid.2011.06.019
13.
Fukuda
,
M. K.
,
Reshotko
,
E.
, and
Hingst
,
W.
,
1975
, “
Control of Shock-Wave Boundary-Layer Interactions by Bleed in Supersonic Mixed Compression Inlets
,”
AIAA
Paper No. 75-1182.10.2514/6.75-1182
14.
Hamed
,
A.
, and
Shang
,
J.
,
1991
, “
Survey of Validation Data Base for Shockwave Boundary-Layer Interactions in Supersonic Inlets
,”
J. Propul. Power
,
7
(
4
), pp.
617
625
.10.2514/3.23370
15.
Willis
,
B.
,
Davis
,
D.
, and
Hihngst
,
W.
,
1995
, “
Flow Coefficient Behavior for Boundary Layer Bleed Holes and Slots
,”
AIAA
Paper No. 95-0031.10.2514/6.1995-0031
16.
Davis
,
D.
,
Willis
,
B.
, and
Hingst
,
W. R.
,
1995
, “
Flowfield Measurements in a Slot-Bled Oblique Shock Wave and Turbulent Boundary-Layer Interaction
,”
AIAA
Paper No. 1995-0032.10.2514/6.1995-2885
17.
Harloff
,
G. J.
, and
Smith
,
G. E.
,
1996
, “
Supersonic-Inlet Boundary-Layer Bleed Flow
,”
AIAA J.
,
34
(
4
), pp.
778
785
.10.2514/3.13140
18.
Hamed
,
A.
, and
Lehnig
,
T.
,
1991
, “
The Effect of Bleed Configuration on Shock/Boundary Layer Interactions
,”
AIAA
Paper No. 91-2014.10.2514/6.1991-2014
19.
Hamed
,
A.
,
Yeuan
,
J.
, and
Shih
,
S.
,
1993
, “
An Investigation of Shock Wave Turbulent Boundary Layer Interaction With Bleed Through Slanted Slots
,”
AIAA
Paper No. 93-2992.10.2514/6.1993-2992
20.
Miller
,
D. N.
, and
Smith
,
B. R.
,
2003
, “
CFD-Based Simulation of Inlet Unstart Phenomena: Toward Supersonic Inlet Flow Control Techniques
,”
ASME
Paper No. FEDSM2003-45471.10.1115/FEDSM2003-45471
21.
Cox
,
C.
,
Lewis
,
C.
,
Pap
,
R.
,
Glover
,
C.
,
Priddy
,
K.
,
Edwards
,
J.
, and
McCarty
,
D.
,
1995
, “
Prediction of Unstart Phenomena in Hypersonic Aircraft
,”
AIAA
Paper No. 1995-6018. 10.2514/6.1995-6018
22.
Domel
,
N. D.
,
Baruzzini
,
D.
, and
Miller
,
D. N.
,
2012
, “
A Perspective on Mixed-Compression Inlets and the Use of Cfd and Flow Control in the Design Process
,”
AIAA
Paper No. 2012-0014, pp.
1
14
.10.2514/6.2012-14
23.
Qiushi
,
L.
,
Yongzhao
,
L.
, and
Shaobin
,
L.
,
2014
, “
A Quasi One-Dimensional Bleed Flow Rate Model for Terminal Normal Shock Stability in Mixed Compression Supersonic Inlet
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
228
(
14
), pp.
2569
2583
.10.1177/0954406213519975
24.
Bragg
,
S. L.
,
1960
, “
Effect of Compressibility on Bleed Discharge Coefficient of Orifices and Convergent Nozzles
,”
J. Mech. Eng. Sci.
,
2
(
1
), pp.
35
44
.10.1243/JMES_JOUR_1960_002_007_02
You do not currently have access to this content.