This paper suggests a method of simultaneous multi-objective shape optimization of hydraulic turbine runner and draft tube (DT) with the objective to increase turbine efficiency in wide range of operating points (OPs). Runner and DT are the main sources of energy losses in hydraulic turbines. Coupling runner and DT in computational fluid dynamics (CFD) analysis enables correct statement of boundary conditions for efficiency evaluation, while simultaneous variation of these components allows more flexible adjustment of flow passage geometry. Detailed runner parameterization with 28 free geometrical parameters and DT parameterization with nine free parameters are given. Optimization problem is solved using multi-objective genetic algorithm (MOGA). For each variation of runner and DT shapes, flow field in wicket gate (WG), runner, and DT is simulated using steady-state Reynolds-Averaged Navier–Stokes (RANS) equations with k-e turbulence model. Energy-based boundary conditions are used for the calculations, allowing determination of efficiency of the whole turbine in correspondence with International Electrotechnical Commission (IEC) standard. Formulations of multiple OP efficiency objective functions and constraints are discussed in detail. To demonstrate the advantages of simultaneous runner and DT variation, two optimization problems are solved for a medium specific speed Francis turbine. Namely, single runner and coupled “runner–DT” optimizations are carried out. It is shown that optimized runner–DT geometry outperforms the result of single runner optimization by about 0.3% in terms of average efficiency, showing the potential of the developed approach to improve multiregime turbine characteristics in practical design optimization problems.

References

References
1.
Cherny
,
S. G.
,
Chirkov
,
D. V.
,
Lapin
,
V. N.
,
Lobareva
,
I. F.
,
Sharov
,
S. V.
, and
Skorospelov
,
V. A.
,
2005
, “
3D Euler Flow Simulation in Hydro Turbines: Unsteady Analysis and Automatic Design
,”
Notes on Numerical Fluid Mechanics and Multidisciplinary Design
, Vol.
93
,
Springer
,
Germany
, pp.
33
51
.10.1007/978-3-540-33844-4_4
2.
Cherny
,
S. G.
,
Chirkov
,
D. V.
,
Lapin
,
V. N.
,
Sharov
,
S. V.
,
Skorospelov
,
V. A.
, and
Pylev
,
I. M.
,
2006
, “
Unsteady Flow Computation in Hydroturbines Using Euler Equations
,”
Turbomachines: Aeroelasticity, Aeroacoustics, and Unsteady Aerodynamics
,
Torus Press Ltd.
,
Moscow
, pp.
356
369
.
3.
Cherny
,
S. G.
,
Bannikov
,
D. V.
,
Chirkov
,
D. V.
,
Demianov
,
V. A.
,
Pylev
,
I. M.
,
Skorospelov
,
V. A.
, and
Stepanov
,
V. N.
,
2008
, “
Automatic Optimal Shape Design of Hydroturbine Flow Passage
,”
Proceedings of the HYDRO 2008
,
Ljubljana
,
Slovenia
.
4.
Bannikov
,
D. V.
,
Yesipov
,
D. V.
,
Cherny
,
S. G.
, and
Chirkov
,
D. V.
,
2010
, “
Optimization Design of Hydroturbine Rotors According to the Efficiency-Strength Criteria
,”
Thermophys. Aeromech.
,
17
(
4
), pp.
613
620
.10.1134/S0869864310040141
5.
Pilev
,
I.
,
Sotnikov
,
A.
,
Rigin
,
V.
,
Semenova
,
A.
,
Cherny
,
S.
,
Chirkov
,
D.
,
Bannikov
,
D.
, and
Skorospelov
,
V.
,
2012
, “
Multiobjective Optimal Design of Runner Blade Using Efficiency and Draft Tube Pulsation Criteria
,”
Proceedings of the 26th IAHR Symposium on Hydraulic Machinery and Systems
.
6.
Semenova
,
A.
,
Chirkov
,
D.
,
Lyutov
,
A.
,
Cherny
,
S.
,
Skorospelov
,
V.
, and
Pylev
,
I.
,
2014
, “
Multi-Objective Shape Optimization of Runner Blade for Kaplan Turbine
,”
Proceedings of the 27th IAHR Symposium on Hydraulic Machinery and Systems
.
7.
Kurosawa
,
S.
, and
Nakamura
,
K.
,
2009
, “
Design Optimization of a High Specific Speed Francis Turbine Using Multi-Objective Genetic Algorithm
,”
Int. J. Fluid Mach. Syst.
,
2
(
2
), pp.
102
109
.10.5293/IJFMS.2009.2.2.102
8.
Flores
,
E.
,
Bornard
,
L.
,
Tomas
,
L.
,
Liu
,
J.
, and
Couston
,
M.
,
2012
, “
Design of Large Francis Turbine Using Optimal Methods
,”
Proceedings of the 26th IAHR Symposium on Hydraulic Machinery and Systems
.
9.
Enomoto
,
Y.
,
Kurosawa
,
S.
, and
Kawajiri
,
H.
,
2012
, “
Design Optimization of a High Specific Speed Francis Turbine Runner
,”
Proceedings of the 26th IAHR Symposium on Hydraulic Machinery and Systems
.
10.
Eisinger
,
R.
, and
Ruprecht
,
A.
,
2001
, “
Automatic Shape Optimization of Hydro Turbine Components Based on CFD
,”
Seminar “CFD for Turbomachinery Applications,” Gdansk
,
Poland
, pp.
101
111
.
11.
Puente
,
L.
,
Reggio
,
M.
, and
Guibault
,
F.
,
2003
, “
Automatic Shape Optimization of a Hydraulic Turbine Draft Tube
,”
Proceedings of the International Conference CFD2003
,
Vancouver
,
BC
.
12.
Marjavaara
,
B.
, and
Lundström
,
T.
,
2007
, “
Hydraulic Turbine Diffuser Shape Optimization by Multiple Surrogate Model Approximations of Pareto Fronts
,”
ASME J. Fluids Eng.
,
129
(
9
), pp.
1228
1240
.10.1115/1.2754324
13.
McNabb
,
J.
,
Devals
,
C.
,
Kyriacou
,
S. A.
,
Murry
,
N.
, and
Mullins
,
B. F.
,
2014
, “
CFD Based Draft Tube Hydraulic Design Optimization
,” 26th IAHR Symposium on Hydraulic Machinery and Systems, pp.
1
10
.
14.
Jošt
,
D.
, and
Lipej
,
A.
,
2011
, “
Numerical Prediction of Non-Cavitating and Cavitating Vortex Rope in a Francis Turbine Draft Tube
,”
Strojniški Vestnik—J. Mech. Eng.
,
57
(
6
), pp.
445
456
.10.5545/sv-jme.2010.068
15.
Mauri
,
S.
,
2002
, “
Numerical Simulation and Flow Analysis of an Elbow Diffuser
,” Ph.D. thesis, EPFL No. 2527.
16.
Galván
,
S.
,
Reggio
,
M.
, and
Guibault
,
F.
,
2013
, “
Inlet Velocity Profile Optimization of the Turbine 99 Draft Tube
,”
ASME
Paper No. FEDSM2013-16473. 10.1115/FEDSM2013-16473
17.
Susan-Resiga
,
R. F.
,
Muntean
,
S.
, and
Ciocan
,
T.
,
2014
, “
Improving Draft Tube Hydrodynamics Over a Wide Operating Range
,”
Proc. Rom. Acad. Ser. A: Math., Phys., Tech. Sci., Inf. Sci.
,
15
(
2
), pp.
182
190
.
18.
Susan-Resiga
,
R.
,
Ciocan
,
G.
,
Anton
,
I.
, and
Avellan
,
F.
,
2006
, “
Analysis of the Swirling Flow Downstream a Francis Turbine Runner
,”
ASME J. Fluids Eng.
,
128
, pp.
177
189
.10.1115/1.2137341
19.
Susan-Resiga
,
R.
,
Muntean
,
S.
,
Avellan
,
F.
, and
Anton
,
I.
,
2011
, “
Mathematical Modeling of Swirling Flow in Hydraulic Turbines for the Full Operating Range
,”
Appl. Math. Model.
,
35
, pp.
4759
4773
.10.1016/j.apm.2011.03.052
20.
EPRI,
2000
, “
Hydro Life Extension Modernization Guides: Volume 2: Hydromechanical Equipment
,” Palo Alto, CA.
21.
Čelič
,
D.
, and
Lipej
,
A.
,
2011
, “
Verification of Numerical Analysis of Hydraulic Turbines With a Modal Test Data
,”
NUMECA International's User Meeting
,
Brussels
,
Belgium
.
22.
IEC Standard 60193
,
1999
,
Hydraulic Turbines, Storage Pumps and Pump-Turbines—Model Acceptance Tests
,
International Electrotechnical Commission
, Geneva, Switzerland.
23.
Kyriacou
,
S. A.
,
Weissenberger
,
S.
,
Grafenberger
,
P.
, and
Giannakoglou
,
K. C.
,
2010
, “
Optimization of Hydraulic Machinery by Exploiting Previous Successful Designs
,”
Proceedings of the 25th IAHR Symposium on Hydraulic Machinery and Systems
.
24.
Gubin
,
M. F.
,
1973
,
Draft Tubes of Hydro-Electric Stations
,
Amerind Publishing
,
New Delhi, India
.
25.
Skotak
,
A.
,
Mikulasek
,
J.
, and
Obrovsky
,
J.
,
2009
, “
Development of the New High Specific Speed Fixed Blade Turbine Runner
,”
Int. J. Fluid Mach. Syst.
,
2
(
4
), pp.
392
399
.10.5293/IJFMS.2009.2.4.392
26.
Cherny
,
S. G.
,
Sharov
,
S. V.
,
Skorospelov
,
V. A.
, and
Turuk
,
P. A.
,
2003
, “
Methods for Three-Dimensional Flows Computation in Hydraulic Turbines
,”
Russ. J. Numer. Anal. Math. Model.
,
18
(
2
), pp.
87
104
.10.1515/156939803766454356
27.
Rogers
,
S. E.
,
Kwak
,
D.
, and
Kiris
,
C.
,
1991
, “
Steady and Unsteady Solutions of the Incompressible Navier–Stokes Equations
,”
AIAA J.
,
29
(
4
), pp.
603
610
.10.2514/3.10627
28.
Balint
,
D.
,
Muntean
,
S.
,
Anton
,
I.
, and
Susan-Resiga
,
R.
,
2005
, “
A New Mixing Interface Approach for Turbulent Swirling Flows in Hydraulic Turbines
,”
Sci. Bull. “Politeh.” Univ. Timisoara, Trans. Mech.
,
50
(
64
), pp.
113
120
.
29.
Panov
,
L. V.
,
Chirkov
,
D. V.
,
Cherny
,
S. G.
,
Pylev
,
I. M.
, and
Sotnikov
,
A. A.
,
2012
, “
Numerical Modeling of Steady-State Cavitational Flow of Viscous Fluid in Francis Hydroturbine
,”
Thermophys. Aeromech.
,
19
(
3
), pp.
415
427
.10.1134/S0869864312030079
You do not currently have access to this content.