A numerical model of turbulent transient flow is used to study the dynamics of turbulence during different periods of water hammer in a polymeric pipe. The governing equations of the transient flow are solved by using the finite difference (FD) method, and the effects of viscoelasticity are modeled by means of a two-dimensional (2D) Kelvin–Voigt model. The experimental data with the Ghidaoui parameter P in the order of one are chosen in which the generated shear wave propagates toward the center of the pipe, while the pressure wave passes the length of the pipe. By studying the turbulence shear force during different times, it is shown that the turbulence structure changes considerably in the first cycle of water hammer. In the accelerated phases, the dominant feature is the creation of a shear wave near the wall, and in the decelerated phases the dominant feature is the propagation of the shear wave created in the accelerated phase.

References

References
1.
Vardy
,
A. E.
, and
Hwang
,
K. L.
,
1991
, “
A Characteristic Model of Transient Friction in Pipes
,”
J. Hydraul. Res.
,
29
(
5
), pp.
669
685
.10.1080/00221689109498983
2.
Pezzinga
,
G.
,
1999
, “
Quasi-2D Model for Unsteady Flow in Pipe Networks
,”
J. Hydraul. Eng.
,
125
(
7
), pp.
676
685
.10.1061/(ASCE)0733-9429(1999)125:7(676)
3.
Zhao
,
M.
, and
Ghidaoui
,
M. S.
,
2003
, “
Efficient Quasi-Two-Dimensional Model for WaterHammer Problems
,”
J. Hydraul. Eng.
,
129
(
12
), pp.
1007
1013
.10.1061/(ASCE)0733-9429(2003)129:12(1007)
4.
Duan
,
H. F.
,
Ghidaoui
,
M. S.
, and
Tung
,
Y. K.
,
2009
, “
An Efficient Quasi-2D Simulation of Water Hammer in Complex Pipe Systems
,”
ASME J. Fluids Eng.
,
131
(
8
), p.
081105
.10.1115/1.3176978
5.
Riasi
,
A. R.
,
Nourbakhsh
,
A.
, and
Raisee
,
M.
,
2009
, “
Unsteady Turbulent Pipe Flow Due to Water Hammer Using k-θ Turbulence Model
,”
J. Hydraul. Res.
,
47
(
4
), pp.
429
437
.10.1080/00221686.2009.9522018
6.
Wahba
,
E. M.
,
2009
, “
Turbulence Modeling for Two-Dimensional Water Hammer Simulations in the Low Reynolds Number Range
,”
J. Comput. Fluids
,
38
(
9
), pp.
1763
1770
.10.1016/j.compfluid.2009.03.007
7.
Riasi
,
A.
,
Nourbakhsh
,
A.
, and
Raisee
,
M.
,
2009
, “
Unsteady Velocity Profiles in Laminar and Turbulent Water Hammer Flows
,”
ASME J. Fluids Eng.
,
131
(
12
), pp.
121202
121208
.10.1115/1.4000557
8.
Brunone
,
B.
,
Ferrante
,
M.
, and
Cacciamani
,
M.
,
2004
, “
Decay of Pressure and Energy Dissipation in Laminar Transient Flow
,”
ASME J. Fluids Eng.
,
126
(
6
), pp.
928
934
.10.1115/1.1839926
9.
Brunone
,
B.
,
Golia
,
U. M.
, and
Greco
,
M.
,
1995
, “
Effects of Two-Dimensionality on Pipe Transients Modeling
,”
J. Hydraul. Eng.
,
121
(
12
), pp.
906
912
.10.1061/(ASCE)0733-9429(1995)121:12(906)
10.
Silva-Araya
,
W. F.
, and
Chaudhry
,
M. H.
,
1997
, “
Computation of Energy Dissipation in Transient Flow
,”
J. Hydraul. Eng.
,
123
(
2
), pp.
108
115
.10.1061/(ASCE)0733-9429(1997)123:2(108)
11.
Zhao
,
M.
, and
Ghidaoui
,
M. S.
,
2006
, “
Investigation of Turbulence Behavior in Pipe Transient Using a k-ε Model
,”
J. Hydraul. Res.
,
44
(
5
), pp.
682
692
.10.1080/00221686.2006.9521717
12.
Fan
,
S.
,
Lakshminarayana
,
B.
, and
Barnett
,
M.
,
1993
, “
Low-Reynolds-Number k-ε Model for Unsteady Turbulent Boundary-Layer Flows
,”
AIAA J.
,
31
(
10
), pp.
1777
1784
.10.2514/3.11849
13.
Riasi
,
A.
,
Nourbakhsh
,
A.
, and
Raisee
,
M.
,
2013
, “
Energy Dissipation in Unsteady Turbulent Pipe Flows Caused by Water Hammer
,”
J. Comput. Fluids
,
73
, pp.
124
133
.10.1016/j.compfluid.2012.12.015
14.
Cotton
,
M. A.
,
Craft
,
T. J.
,
Guy
,
A. W.
, and
Launder
,
B. E.
,
2001
, “
On Modelling Periodic Motion With Turbulence Closures
,”
Flow, Turbul. Combust.
,
67
(
2
), pp.
143
158
.10.1023/A:1014002326410
15.
Scotti
,
A.
, and
Piomelli
,
U.
,
2002
, “
Turbulence Models in Pulsating Flows
,”
AIAA J.
,
40
(
3
), pp.
537
544
.10.2514/2.1679
16.
Tardu
,
S. F.
, and
Da Costa
,
P.
,
2005
, “
Experiments and Modeling of an Unsteady Turbulent Channel Flow
,”
AIAA J.
,
43
(
1
), pp.
140
148
.10.2514/1.6332
17.
Al-Sharif
,
S. F.
,
Cotton
,
M. A.
, and
Craft
,
T. J.
,
2010
, “
Reynolds Stress Transport Models in Unsteady and Non-Equilibrium Turbulent Flows
,”
Int. J. Heat Fluid Flow
,
31
(
3
), pp.
401
408
.10.1016/j.ijheatfluidflow.2010.02.024
18.
Khaleghi
,
A.
,
Pasandideh-Fard
,
M.
,
Malek-Jafarian
,
M.
, and
Chung
,
Y. M.
,
2010
, “
Assessment of Common Turbulence Models Under Conditions of Temporal Acceleration in a Pipe
,”
J. Appl. Fluid Mech.
,
3
(
1
), pp.
25
33
.
19.
Revell
,
A. J.
,
Craft
,
T. J.
, and
Laurence
,
D. R.
,
2011
, “
Turbulence Modelling of Unsteady Turbulent Flows Using the Stress Strain Lag Model
,”
Flow, Turbul. Combust.
,
86
(
1
), pp.
129
151
.10.1007/s10494-010-9297-9
20.
Gorji
,
S.
,
Seddighi
,
M.
,
Ariyaratne
,
C.
,
Vardy
,
A. E.
,
O'Donoghue
,
T.
,
Pokrajac
,
D.
, and
He
,
S.
,
2014
, “
A Comparative Study of Turbulence Models in a Transient Channel Flow
,”
J. Comput. Fluids
,
89
, pp.
111
123
.10.1016/j.compfluid.2013.10.037
21.
Ghahremanian
,
S.
, and
Moshfegh
,
B.
,
2014
, “
Evaluation of RANS Models in Predicting Low Reynolds, Free, Turbulent Round Jet
,”
ASME J. Fluids Eng.
,
136
(
1
), p.
011201
.10.1115/1.4025363
22.
Oriji
,
U. R.
,
Karimisani
,
S.
, and
Tucker
,
P. G.
,
2015
, “
RANS Modeling of Accelerating Boundary Layers
,”
ASME J. Fluids Eng.
,
137
(
1
), p.
011202
.10.1115/1.4027846
23.
He
,
S.
, and
Jackson
,
J. D.
,
2000
, “
A Study of Turbulence Under Conditions of Transient Flow in a Pipe
,”
J. Fluid Mech.
,
408
, pp.
1
38
.10.1017/S0022112099007016
24.
Scotti
,
A.
, and
Piomelli
,
U.
,
2001
, “
Numerical Simulation of Pulsating Turbulent Channel Flow
,”
J. Phys. Fluids
,
13
(
5
), pp.
1367
1384
.10.1063/1.1359766
25.
He
,
S.
, and
Jackson
,
J. D.
,
2009
, “
An Experimental Study of Pulsating Turbulent Flow in a Pipe
,”
Eur. J. Mech. B/Fluids
,
28
(
2
), pp.
309
320
.10.1016/j.euromechflu.2008.05.004
26.
He
,
S.
, and
Seddighi
,
M.
,
2013
, “
Turbulence in Transient Channel Flow
,”
J. Fluid Mech.
,
715
, pp.
60
102
.10.1017/jfm.2012.498
27.
Seddighi
,
M.
,
He
,
S.
,
Vardy
,
A. E.
, and
Orlandi
,
P.
,
2014
, “
Direct Numerical Simulation of an Accelerating Channel Flow
,”
Flow, Turbul. Combust.
,
92
(
1–2
), pp.
473
502
.10.1007/s10494-013-9519-z
28.
He
,
S.
,
Ariyaratne
,
C.
, and
Vardy
,
A. E.
,
2011
, “
Wall Shear Stress in Accelerating Turbulent Pipe Flow
,”
J. Fluid Mech.
,
685
, pp.
440
460
.10.1017/jfm.2011.328
29.
Covas
,
D.
,
Stoianov
,
I.
,
Mano
,
J.
,
Ramos
,
H.
,
Graham
,
N.
, and
Maksimovic
,
C.
,
2004
, “
The Dynamic Effect of Pipe-Wall Viscoelasticity in Hydraulic Transients 1: Experimental Analysis and Creep Characterization
,”
J. Hydraul. Res.
,
42
(
5
), pp.
517
532
.10.1080/00221686.2004.9641221
30.
Covas
,
D.
,
Stoianov
,
I.
,
Mano
,
J.
,
Ramos
,
H.
,
Graham
,
N.
, and
Maksimovic
,
C.
,
2005
, “
The Dynamic Effect of Pipe-Wall Viscoelasticity in Hydraulic Transients 2: Model Development, Calibration and Verification
,”
J. Hydraul. Res.
,
43
(
1
), pp.
56
70
.10.1080/00221680509500111
31.
Duan
,
H. F.
,
Ghidaoui
,
M.
,
Lee
,
P. J.
, and
Tung
,
Y. K.
,
2010
, “
Unsteady Friction and Visco-Elasticity in Pipe Fluid Transients
,”
J. Hydraul. Res.
,
48
(
3
), pp.
354
362
.10.1080/00221681003726247
32.
Pezzinga
,
G.
,
Brunune
,
B.
,
Cannizzaro
,
D.
,
Ferrante
,
M.
,
Meniconi
,
S.
, and
Berni
,
A.
,
2014
, “
Two-Dimensional Features of Viscoelastic Models of Pipe Transients
,”
J. Hydraul. Eng.
,
140
(
8
), p.
04014036
.10.1061/(ASCE)HY.1943-7900.0000891
33.
Weinerowska-Bords
,
K.
,
2015
, “
Alternative Approach to Convolution Term of Viscoelasticity in Equations of Unsteady Pipe Flow
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
054501
.10.1115/1.4029573
34.
Brunone
,
B.
, and
Berni
,
A.
,
2010
, “
Wall Shear Stress in Transient Turbulent Pipe Flow by Local Velocity Measurement
,”
J. Hydraul. Eng.
,
136
(
10
), pp.
716
726
.10.1061/(ASCE)HY.1943-7900.0000234
35.
Wilcox
,
D. C.
,
1994
,
Turbulence Modeling for CFD
,
DCW Industries
,
La Canada, CA
.
36.
Kita
,
Y.
,
Adachi
,
Y.
, and
Hirose
,
K.
,
1980
, “
Periodically Oscillating Turbulent Flow in a Pipe
,”
Bull. JSME
,
23
(
179
), pp.
656
664
.10.1299/jsme1958.23.656
37.
Book
,
D. L.
,
Boris
,
J. P.
, and
Hain
,
K.
,
1975
, “
Flux-Corrected Transport II: Generalization of the Method
,”
J. Comput. Phys.
,
18
(
3
), pp.
248
283
.10.1016/0021-9991(75)90002-9
38.
Ghidaoui
,
M. S.
,
Mansour
,
S. G. S.
, and
Zhao
,
M.
,
2002
, “
Applicability of Quasisteady and Axisymmetric Turbulence Models in Water Hammer
,”
J. Hydraul. Eng.
,
128
(
10
), pp.
917
924
.10.1061/(ASCE)0733-9429(2002)128:10(917)
You do not currently have access to this content.