This paper uses two modern commercial cfd software packages to compare the performance of a standard and improved impulse turbine injector developed in a previous study. The two injector designs are compared by simulating the two-dimensional (2D) axis-symmetric cases as well as full three-dimensional (3D) cases including the bend in the branch pipe and the guide vanes. The resulting jet profiles generated by these simulations are used to initialize the inlet conditions for a full Pelton and Turgo runner simulation at different operating conditions in order to assess the impact of the injector design on the performance and efficiency of a real impulse turbine. The results showed that the optimized injector design, with steeper nozzle and spear angles, not only attains higher efficiencies in the 2D and 3D injector simulations but also produces a jet which performs better than the standard design in both the Pelton and the Turgo runner simulations. The results show that the greatest improvement in the hydraulic efficiency occurs within the injector with the improved design, showing an increase in efficiency of 0.76% for the Turgo 3D injector and 0.44% for the Pelton 3D injector. The results also show that in the case of the 3D injector, the improved injector geometry produces a jet profile which induces better overall runner performance, giving a 0.5% increase in total hydraulic efficiency for the Pelton case and 0.7% for the Turgo case.

References

References
1.
Pelton
,
L. A.
,
1880
, “
Pelton Water Wheel
,” U.S. Patent No. 223,692.
2.
Crewdson
,
E.
,
1920
, “
Improvements in Water Turbines
,” UK Patent No. 155,175 (A).
3.
Gilkes
, “
Gilkes Turgo Impulse Hydro Turbine
,” Last accessed May 6, 2015, http://www.gilkes.com/user_uploads/turgo%20paper2.pdf
4.
Perrig
,
A.
,
Farhat
,
M.
, and
Avellan
,
F.
,
2007
, “
High Speed Flow Visualisation of an Impinging Jet on a Pelton Turbine Bucket
,”
ASME
Paper No. FEDSM2007-37628, pp.
165
168
.10.1115/FEDSM2007-37628
5.
Fiereder
,
R.
,
Riemann
,
S.
, and
Schilling
,
R.
,
2010
, “
Numerical and Experimental Investigation of the 3D Free Surface Flow in a Model Pelton Turbine
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
12
(
1
), p.
012072
.10.1088/1755-1315/12/1/012072
6.
Perrig
,
A.
,
Avellan
,
F.
,
Kueny
,
J.-L.
,
Farhat
,
M.
, and
Parkinson
,
E.
,
2006
, “
Flow in a Pelton Turbine Bucket: Numerical and Experimental Investigations
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
350
358
.10.1115/1.2170120
7.
Perrig
,
A.
,
Farhat
,
M.
,
Avellan
,
F.
,
Parkinson
,
E.
,
Garcin
,
H.
,
Bissel
,
C.
,
Valle
,
M.
, and
Favre
,
J.
,
2004
, “
Numerical Flow Analysis in a Pelton Turbine Bucket
,”
Proceedings of the 22nd IAHR Symposium on Hydraulic Machinery and Systems
, Paper No. LMH-CONF-2004-002.
8.
Anagnostopoulos
,
J. S.
,
Koukouvinis
,
Ph. K.
,
Stamatelos
,
F. G.
, and
Papantonis
,
D. E.
,
2012
, “
Optimal Design and Experimental Validation of a Turgo Model Hydro Turbine
,”
ASME
Paper No. ESDA2012-82565, pp.
157
166
.10.1115/ESDA2012-82565
9.
Jost
,
D.
,
Lipej
,
A.
, and
Meznar
,
P.
,
2008
, “
Numerical Prediction of Efficiency, Cavitation and Unsteady Phenomena in Water Turbines
,”
ASME
Paper No. ESDA2008-59563, pp.
157
166
.10.1115/ESDA2008-59563
10.
Jošt
,
D.
,
Mežnar
,
P.
, and
Lipej
,
A.
,
2010
, “
Numerical Prediction of Pelton Turbine Efficiency
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
12
(
1
), p.
012080
.10.1088/1755-1315/12/1/012080
11.
Koukouvinis
,
Ph. K.
,
Anagnostopoulos
,
J. S.
, and
Papantonis
,
D. E.
,
2011
, “
SPH Method Used for Flow Predictions at a Turgo Impulse Turbine: Comparison With Fluent
,”
World Acad. Sci., Eng. Technol.
,
79
(
55
), pp.
659
666
.
12.
Gupta
,
V.
, and
Prasad
,
V.
,
2012
, “
Numerical Investigations for Jet Flow Characteristics on Pelton Turbine Bucket
,”
Int. J. Emerging Technol. Adv. Eng.
,
2
(
7
), pp.
364
370
.
13.
Rossetti
,
A.
,
Pavesi
,
G.
,
Ardizzon
,
G.
, and
Santolin
,
A.
,
2014
, “
Numerical Analyses of Cavitating Flow in a Pelton Turbine
,”
ASME J. Fluids Eng.
,
136
(
8
), p.
081304
.10.1115/1.4027139
14.
Correa
,
J.
,
De Andrade
,
J.
, and
Asuaje
,
M.
,
2012
, “
A Preliminary Analysis of a Turgo Type Turbine CFD Simulation Designed With an Integrated Dimensional Methodology
,”
ASME
Paper No. FEDSM2012-72018, pp.
327
337
.10.1115/FEDSM2012-72018
15.
Correa
,
J.
,
De Andrade
,
J.
,
Noguera
,
R.
,
Croquer
,
S.
,
Jeanty
,
F.
, and
Asuaje
,
M.
,
2012
, “
Design Procedure for a Turgo Type Turbine Using a Three-Dimensional Potential Flow
,”
ASME
Paper No. GT2012-68807, pp.
2039
2052
.10.1115/GT2012-68807
16.
Aggidis
,
G. A.
, and
Židonis
,
A.
,
2014
, “
Hydro Turbine Prototype Testing and Generation of Performance Curves: Fully Automated Approach
,”
Renewable Energy
,
71
, pp.
433
441
.10.1016/j.renene.2014.05.043
17.
Veselý
,
J.
, and
Varner
,
M.
,
2001
, “
A Case Study of Upgrading of 62.5 MW Pelton Turbine
,”
Proceedings of the International Conference IAHR
, pp.
1
10
.
18.
Peron
,
M.
,
Parkinson
,
E.
,
Geppert
,
L. R.
, and
Staubli
,
T.
,
2008
, “
Importance of Jet Quality on Pelton Efficiency and Cavitation
,” IGHEM 2008, pp.
1
9
.
19.
Patel
,
K.
,
Patel
,
B.
,
Yadav
,
M.
, and
Foggia
,
T.
,
2010
, “
Development of Pelton Turbine Using Numerical Simulation
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
12
(
1
), p.
012048
.10.1088/1755-1315/12/1/012048
20.
Gass
,
M.
, and
HetchHetchy Water
,
2002
, “
Modification of Nozzles for the Improvement of Efficiency of Pelton Type Turbines
,”
Proceedings of the HydroVision Conference
, pp.
1
7
.
21.
Staubli
,
T.
, and
Hauser
,
H. P.
,
2004
, “
Flow Visualization—A diagnosis Tool for Pelton Turbines
,” IGHEM 2004, pp.
1
9
.
22.
Zhang
,
Zh.
, and
Casey
,
M.
,
2007
, “
Experimental Studies of the Jet of a Pelton Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
8
), pp.
1181
1192
.10.1243/09576509JPE408
23.
Benzon
,
D.
,
Židonis
,
A.
,
Panagiotopoulos
,
A.
,
Aggidis
,
G. A.
,
Anagnostopoulos
,
J. S.
, and
Papantonis
,
D. E.
,
2015
, “
Impulse Turbine Injector Design Improvement Using Computational Fluid Dynamics
,”
ASME J. Fluids Eng.
,
137
(
4
), p.
041106
.10.1115/1.4029310
24.
ANSYS®
,
2010
, “
ANSYS CFX Powerful Computational Fluid Dynamics Software for Process and Product Design Optimization
,” Last accessed May 6, 2015, http://www.ansys.com/staticassets/ANSYS/staticassets/resourcelibrary/brochure/ansys-cfx-brochure.pdf
25.
ANSYS®
,
2011
, “
The ANSYS Fluent Package Combines Deep Physics and Years of Simulation Development Expertise to Solve CFD Challenges-Right Out of the Box
,” Last accessed May 6, 2015, http://www.ansys.com/staticassets/ANSYS/staticassets/resourcelibrary/brochure/ansys-fluent-brochure-14.0.pdf
26.
Židonis
,
A.
,
Panagiotopoulos
,
A.
,
Aggidis
,
G. A.
,
Anagnostopoulos
,
J. S.
, and
Papantonis
,
D. E.
,
2015
, “
Parametric Optimisation of Two Pelton Turbine Runner Designs Using Computational Fluid Dynamics
,”
J. Hydrodyn., Ser. B
(in press).
27.
Klemetsen
,
L. E.
,
2010
, “
An Experimental and Numerical Study of the Free Surface Pelton Bucket Flow
,” M.Sc. thesis, NTNU, Trondheim, Norway.
28.
Perrig
,
A.
,
2007
, “
Hydrodynamics of the Free Surface Flow in Pelton Turbine Buckets
,” Ph.D. thesis, EPFL, Lausanne, Switzerland, No. EPFL_TH3715.
29.
Barstad
,
L. F.
,
2012
, “
CFD Analysis of a Pelton Turbine
,” M.Sc. thesis, NTNU, Trondheim, Norway.
30.
Zoppe
,
B.
,
Pellone
,
Ch.
,
Maître
,
Th.
, and
Leroy
,
P.
,
2006
, “
Flow Analysis Inside a Pelton Turbine Bucket
,”
ASME J. Turbomachinery
,
128
(
3
), pp.
500
511
.10.1115/1.2184350
You do not currently have access to this content.