A numerical model based on the shallow water equations (SWE) was proposed to simulate the two-dimensional (2D) average flow dynamics of the liquid metal spreading inside a horizontally rotating mold. The SWE were modified to account for the forces, such as the centrifugal force, Coriolis force, shear force with the mold wall, and gravity. In addition, inherent vibrations caused by a poor roundness of the mold and the mold deformation due to temperature gradients were applied explicitly by perturbing the gravity and the axis bending, respectively. Several cases were studied with the following initial conditions: a constant average height of the liquid metal (5, 10, 20, 30, and 40 mm) patched as a flat or a perturbed surface. The angular frequency Ω of the mold (∅1150–3200) was 71.2 (or 30) rad/s. Results showed various wave patterns propagating on the free surface. In early stages, a single longitudinal wave moved around the circumference. As the time proceeded, it slowly diminished and waves traveled mainly in the axial direction. It was found that the mean amplitude of the oscillations grows with the increasing liquid height.

References

1.
Shailesh
,
P.
,
Kumar
,
B. P.
,
Sundarrajan
,
S.
, and
Komariahia
,
M.
,
2012
, “
Experimental Investigation on Centrifugal Casting of 5500 Alloy: A Taguchi Approach
,”
Sci. Res. Essays
,
7
(
44
), pp.
3797
3808
.
2.
Chirita
,
G.
,
Stefanuscu
,
I.
,
Barbosa
,
J.
,
Puga
,
H.
,
Soares
,
D.
, and
Silva
,
F. S.
,
2009
, “
On Assessment of Processing Variables in Vertical Centrifugal Casting Technique
,”
Int. J. Cast Met. Res.
,
22
(
5
), pp.
382
389
.
3.
Chirita
,
G.
,
Stefanuscu
,
I.
,
Soares
,
D.
, and
Silva
,
F. S.
,
2006
, “
Centrifugal Versus Gravity Casting Techniques Over Mechanical Properties
,”
An. Mec. Fractura
,
1
, pp.
317
322
.
4.
Chang
,
S. R.
,
Kim
,
J. M.
, and
Hong
,
C. P.
,
2001
, “
Numerical Simulation of Microstructure Evolution of Al Alloys in Centrifugal Casting
,”
ISIJ Int.
,
41
(
7
), pp.
738
747
.
5.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Computat. Phys.
,
39
(
1
), pp.
201
225
.
6.
Keerthiprasad
,
K. S.
,
Murali
,
M. S.
,
Mukunda
,
P. G.
, and
Majumdar
,
S.
,
2010
, “
Numerical Simulation and Cold Modeling Experiments on Centrifugal Casting
,”
Metall. Mater. Trans. B
,
42
(
1
), pp.
144
155
.
7.
Zagorski
,
R.
, and
Sleziona
,
J.
,
2007
, “
Pouring Mold During Centrifugal Casting Process
,”
Arch. Mater. Sci. Eng.
,
28
(
7
), pp.
441
444
.
8.
Kaschnitz
,
E.
,
2012
, “
Numerical Simulation of Centrifugal Casting of Pipes
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
33
(
1
), p.
012031
.
9.
Daming
,
X.
,
Limin
,
J.
, and
Hengzhi
,
F.
,
2008
, “
Effects of Centrifugal and Coriolis Forces on the Mold-Filling Behavior of Titanium Melts in Vertically Rotating Molds
,”
China Foundry
,
5
(
4
), pp.
249
257
.
10.
Xu
,
Z.
,
Song
,
N.
,
Tol
,
R. V.
,
Luan
,
Y.
, and
Li
,
D.
,
2012
, “
Modelling of Horizontal Centrifugal Casting of Work Roll
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
33
(
1
), p.
012030
.
11.
Fjeld
,
A.
, and
Ludwig
,
A.
,
2009
, “
Flow Patterns and Re-Melting During the Filling of a Large Composite Casting
,”
Int. J. Cast Met. Res.
,
22
(1–4), pp.
111
114
.
12.
Ludwig
,
A.
,
Kharicha
,
A.
, and
Wu
,
M.
,
2014
, “
Modeling of Multiscale and Multiphase Phenomena in Materials Processing
,”
Metall. Mater. Trans. B
,
45
(
1
), pp.
36
43
.
13.
Leveque
,
R. J.
,
2002
,
Finite Volume Methods for Hyperbolic Systems
,
Cambridge University Press
,
New York
.
14.
Dellar
,
P. J.
, and
Salmon
,
R.
,
2005
, “
Shallow Water Equations With a Complete Coriolis Force and Topography
,”
Phys. Fluids
,
17
(
10
), pp.
1
23
.
15.
Hirt
,
C. W.
, and
Richardson
,
J. E.
,
1999
, “
The Modeling of Shallow Flows
,”
Flow Sci. Tech. Notes
,
48
, pp.
1
14
.
16.
Lanser
,
D.
,
Blom
,
J. G.
, and
Verwer
,
J. G.
,
2001
, “
Time Integration of the Shallow Water Equations in Spherical Geometry
,”
Modell. Anal. Simul.
,
171
(
1
), pp.
373
393
.
17.
Audusse
,
E.
,
Bouchut
,
F.
,
Bristeau
,
M.-O.
,
Klein
,
R.
, and
Perthame
,
B.
,
2004
, “
A Fast and Stable Well-Balanced Scheme With Hydrostatic Reconstruction for Shallow Water Flows
,”
SIAM J. Sci. Comput.
,
25
(
6
), pp.
2050
2065
.
18.
Martinez
,
G.
,
Garnier
,
M.
, and
Durand
,
F.
,
1987
, “
Stirring Phenomena in Centrifugal Casting of Pipes
,”
Appl. Sci. Res.
,
44
(1–2), pp.
225
239
.
19.
Love
,
A. E. H.
,
1888
, “
The Small Free Vibrations and Deformations of a Thin Elastic Shell
,”
Philos. Transl. R. Soc. London, Ser. A
,
179
, pp.
491
546
.
20.
Donnell
,
L. H.
,
1935
, “
Stability of Thin-Walled Tubes Under Torsion
,” N.A.C.A. Report No. 479.
21.
Li
,
H.
,
Lam
,
K.-Y.
, and
Ng
,
T.-Y.
,
2005
,
Rotating Shell Dynamics
,
Elsevier
,
London
.
22.
Bryan
,
G. H.
,
1890
, “
On the Beats in the Vibration of Revolving Cylinder or Bell
,”
Proc. Cambridge Philos. Soc.
,
7
(
3
), pp.
101
111
.
23.
Casulli
,
V.
,
1999
, “
A Semi-Implicit Finite Difference Method for Non-Hydrostatic, Free-Surface Flows
,”
Int. J. Numer. Methods Fluids
,
30
(4), pp.
425
440
.
24.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
(
1
), pp.
12
49
.
You do not currently have access to this content.