Wall-bounded particle-laden flows exhibit a variety of interesting phenomena that can greatly impact the underlying carrier-phase turbulence in practical systems. This work aims at investigating the effects of particle clustering on the carrier-phase turbulence in both dilute and moderately dilute channel flows via highly resolved Euler–Lagrange simulations. It is shown that the fluid turbulence departs significantly from the initially fully developed turbulent flow at moderate concentrations. In particular, the gas velocity retains a viscous sublayer at higher values of mass loading, but displays a strongly reduced boundary layer thickness and a flatter velocity profile compared to the dilute case. Furthermore, the flow orientation with respect to gravity is found to significantly impact the multiphase dynamics. Particles showed a preference to be in the near-wall region with significant volume fraction fluctuations when gravity opposed the mean flow direction, while particles accumulated at the channel center with less significant volume fraction fluctuations for flows with gravity aligned with the mean flow direction.

References

References
1.
Eaton
,
J.
, and
Fessler
,
J.
,
1994
, “
Preferential Concentration of Particles by Turbulence
,”
Int. J. Multiphase Flow
,
20
, pp.
169
209
.10.1016/0301-9322(94)90072-8
2.
Wang
,
Q.
, and
Squires
,
K.
,
1996
, “
Large Eddy Simulation of Particle-Laden Turbulent Channel Flow
,”
Phys. Fluids
,
8
(
5
), pp.
1207
1223
.10.1063/1.868911
3.
Rouson
,
D.
, and
Eaton
,
J.
,
2001
, “
On the Preferential Concentration of Solid Particles in Turbulent Channel Flow
,”
J. Fluid Mech.
,
428
(
1
), pp.
149
169
.10.1017/S0022112000002627
4.
Yamamoto
,
Y.
,
Potthoff
,
M.
,
Tanaka
,
T.
,
Kajishima
,
T.
, and
Tsuji
,
Y.
,
2001
, “
Large-Eddy Simulation of Turbulent Gas-Particle Flow in a Vertical Channel: Effect of Considering Inter-Particle Collisions
,”
J. Fluid Mech.
,
442
, pp.
303
334
.10.1017/S0022112001005092
5.
Marchioli
,
C.
, and
Soldati
,
A.
,
2002
, “
Mechanisms for Particle Transfer and Segregation in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
468
, pp.
283
315
.10.1017/S0022112002001738
6.
Picciotto
,
M.
,
Marchioli
,
C.
, and
Soldati
,
A.
,
2005
, “
Characterization of Near-Wall Accumulation Regions for Inertial Particles in Turbulent Boundary Layers
,”
Phys. Fluids
,
17
(
9
), p.
098101
.10.1063/1.2033573
7.
Balachandar
,
S.
, and
Eaton
,
J.
,
2010
, “
Turbulent Dispersed Multiphase Flow
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
111
133
.10.1146/annurev.fluid.010908.165243
8.
Pitton
,
E.
,
Marchioli
,
C.
,
Lavezzo
,
V.
,
Soldati
,
A.
, and
Toschi
,
F.
,
2012
, “
Anisotropy in Pair Dispersion of Inertial Particles in Turbulent Channel Flow
,”
Phys. Fluids
,
24
(
7
), p.
073305
.10.1063/1.4737655
9.
Zhao
,
L.
,
Andersson
,
H. I.
, and
Gillissen
,
J. J.
,
2013
, “
Interfacial Energy Transfer and Particle Dissipation in Particle-Laden Wall Turbulence
,”
J. Fluid Mech.
,
715
, pp.
32
59
.10.1017/jfm.2012.492
10.
Kulick
,
J.
,
Fessler
,
J.
, and
Eaton
,
J.
,
1994
, “
Particle Response and Turbulence Modification in Fully Developed Channel Flow
,”
J. Fluid Mech.
,
277
(
1
), pp.
109
134
.10.1017/S0022112094002703
11.
Capecelatro
,
J.
,
Desjardins
,
O.
, and
Fox
,
R. O.
,
2014
, “
Numerical Study of Collisional Particle Dynamics in Cluster-Induced Turbulence
,”
J. Fluid Mech.
,
747
(
R2
), pp.
1
13
.10.1017/jfm.2014.194
12.
Fox
,
R. O.
,
2014
, “
On Multiphase Turbulence Models for Collisional Fluid–Particle Flows
,”
J. Fluid Mech.
,
742
, pp.
368
424
.10.1017/jfm.2014.21
13.
Capecelatro
,
J.
,
Pepiot
,
P.
, and
Desjardins
,
O.
,
2014
, “
Numerical Characterization and Modeling of Particle Clustering in Wall-Bounded Vertical Risers
,”
Chem. Eng. J.
,
245
, pp.
295
310
.10.1016/j.cej.2014.02.040
14.
McMillan
,
J.
,
Shaffer
,
F.
,
Gopalan
,
B.
,
Chew
,
J. W.
,
Hrenya
,
C.
,
Hays
,
R.
,
Karri
,
R. S. C.
, and
Cocco
,
R.
,
2013
, “
Particle Cluster Dynamics During Fluidization
,”
Chem. Eng. Sci.
,
100
, pp.
39
51
.10.1016/j.ces.2013.02.047
15.
Lints
,
M. C.
, and
Glicksman
,
L.
,
1994
, “
Parameters Governing Particle-to-Wall Heat Transfer in a Circulating Fluidized Bed
,”
Circulating Fluidized Bed Technology IV
,
AIChE
,
New York
, pp.
297
304
.
16.
Shaffer
,
F.
,
Gopalan
,
B.
,
Breault
,
R. W.
,
Cocco
,
R.
,
Karri
,
S.
,
Hays
,
R.
, and
Knowlton
,
T.
,
2013
, “
High Speed Imaging of Particle Flow Fields in CFB Risers
,”
Powder Technol.
,
242
, pp.
86
99
.10.1016/j.powtec.2013.01.012
17.
Capecelatro
,
J.
,
Pepiot
,
P.
, and
Desjardins
,
O.
,
2015
, “
Numerical Investigation and Modeling of Reacting Gas-Solid Flows in the Presence of Clusters
,”
Chem. Eng. Sci.
,
122
, pp.
403
415
.10.1016/j.ces.2014.10.005
18.
Cheng
,
Y.
,
Wu
,
C.
,
Zhu
,
J.
,
Wei
,
F.
, and
Jin
,
Y.
,
2008
, “
Downer Reactor: From Fundamental Study to Industrial Application
,”
Powder Technol.
,
183
(
3
), pp.
364
384
.10.1016/j.powtec.2008.01.022
19.
Wu
,
C.
,
Cheng
,
Y.
,
Ding
,
Y.
, and
Jin
,
Y.
,
2010
, “
CFD–DEM Simulation of Gas–Solid Reacting Flows in Fluid Catalytic Cracking (FCC) Process
,”
Chem. Eng. Sci.
,
65
(
1
), pp.
542
549
.10.1016/j.ces.2009.06.026
20.
Zhang
,
H.
,
Huang
,
W. X.
, and
Zhu
,
J. X.
,
2001
, “
Gas-Solids Flow Behavior: CFB Riser vs. Downer
,”
AIChE J.
,
47
(
9
), pp.
2000
2011
.10.1002/aic.690470911
21.
Portela
,
L.
, and
Oliemans
,
R.
,
2003
, “
Eulerian–Lagrangian DNS/LES of Particle–Turbulence Interactions in Wall-Bounded Flows
,”
Int. J. Numer. Methods Fluids
,
43
(
9
), pp.
1045
1065
.10.1002/fld.616
22.
Kuerten
,
J.
,
2006
, “
Subgrid Modeling in Particle-Laden Channel Flow
,”
Phys. Fluids
,
18
(
2
), p.
025108
.10.1063/1.2176589
23.
Vreman
,
B.
,
Geurts
,
B.
,
Deen
,
N.
,
Kuipers
,
J.
, and
Kuerten
,
J.
,
2009
, “
Two-and Four-Way Coupled Euler–Lagrangian Large-Eddy Simulation of Turbulent Particle-Laden Channel Flow
,”
Flow Turbul. Combust.
,
82
(
1
), pp.
47
71
.10.1007/s10494-008-9173-z
24.
Zamansky
,
R.
,
Vinkovic
,
I.
, and
Gorokhovski
,
M.
,
2013
, “
Accelerations in Turbulent Channel Flow: Universalities in Statistics, Sub-Grid Stochastic Models and Application
,”
J. Fluid Mech.
,
721
, pp.
627
668
.10.1017/jfm.2013.48
25.
Cundall
,
P.
, and
Strack
,
O.
,
1979
, “
A Discrete Numerical Model for Granular Assemblies
,”
Geotechnique
,
29
(
1
), pp.
47
65
.10.1680/geot.1979.29.1.47
26.
Tenneti
,
S.
, and
Subramaniam
,
S.
,
2014
, “
Particle-Resolved Direct Numerical Simulation for Gas-Solid Flow Model Development
,”
Annu. Rev. Fluid Mech.
,
46
, pp.
199
230
.10.1146/annurev-fluid-010313-141344
27.
Xu
,
Y.
, and
Subramaniam
,
S.
,
2010
, “
Effect of Particle Clusters on Carrier Flow Turbulence: A Direct Numerical Simulation Study
,”
Flow Turbul. Combust.
,
85
(
3–4
), pp.
735
761
.10.1007/s10494-010-9298-8
28.
Shah
,
M. T.
,
Utikar
,
R. P.
,
Tade
,
M. O.
,
Evans
,
G. M.
, and
Pareek
,
V. K.
,
2013
, “
Effect of a Cluster on Gas–Solid Drag From Lattice Boltzmann Simulations
,”
Chem. Eng. Sci.
,
102
, pp.
365
372
.10.1016/j.ces.2013.08.010
29.
Uhlmann
,
M.
, and
Doychev
,
T.
,
2014
, “
Sedimentation of a Dilute Suspension of Rigid Spheres at Intermediate Galileo Numbers: The Effect of Clustering Upon the Particle Motion
,”
J. Fluid Mech.
,
752
, pp.
310
348
.10.1017/jfm.2014.330
30.
Anderson
,
T.
, and
Jackson
,
R.
,
1967
, “
Fluid Mechanical Description of Fluidized Beds. Equations of Motion
,”
Ind. Eng. Chem. Fundam.
,
6
(
4
), pp.
527
539
.10.1021/i160024a007
31.
Desjardins
,
O.
,
Blanquart
,
G.
,
Balarac
,
G.
, and
Pitsch
,
H.
,
2008
, “
High Order Conservative Finite Difference Scheme for Variable Density Low Mach Number Turbulent Flows
,”
J. Comput. Phys.
,
227
(
15
), pp.
7125
7159
.10.1016/j.jcp.2008.03.027
32.
Pierce
,
C.
,
2001
, “
Progress-Variable Approach for Large-Eddy Simulation of Turbulent Combustion
,” Ph.D. thesis, CiteSeer, Stanford, CA.
33.
Gibilaro
,
L.
,
Gallucci
,
K.
,
Di Felice
,
R.
, and
Pagliai
,
P.
,
2007
, “
On the Apparent Viscosity of a Fluidized Bed
,”
Chem. Eng. Sci.
,
62
(
1–2
), pp.
294
300
.10.1016/j.ces.2006.08.030
34.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A: Fluid Dyn.
,
3
(
7
), pp.
1760
1765
.10.1063/1.857955
35.
Lilly
,
D.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A: Fluid Dyn.
,
4
(
3
), pp.
633
636
.10.1063/1.858280
36.
Meneveau
,
C.
,
Lund
,
T.
, and
Cabot
,
W.
,
1996
, “
A Lagrangian Dynamic Subgrid-Scale Model of Turbulence
,”
J. Fluid Mech.
,
319
(
1
), pp.
353
385
.10.1017/S0022112096007379
37.
Capecelatro
,
J.
, and
Desjardins
,
O.
,
2013
, “
An Euler–Lagrange Strategy for Simulating Particle-Laden Flows
,”
J. Comput. Phys.
,
238
, pp.
1
31
.10.1016/j.jcp.2012.12.015
38.
Tenneti
,
S.
,
Garg
,
R.
, and
Subramaniam
,
S.
,
2011
, “
Drag Law for Monodisperse Gas-Solid Systems Using Particle-Resolved Direct Numerical Simulation of Flow Past Fixed Assemblies of Spheres
,”
Int. J. Multiphase Flow
,
37
(
9
), pp.
1072
1092
.10.1016/j.ijmultiphaseflow.2011.05.010
39.
Briley
,
W. R.
, and
McDonald
,
H.
,
1977
, “
Solution of the Multidimensional Compressible Navier-Stokes Equations by a Generalized Implicit Method
,”
J. Comput. Phys.
,
24
(
4
), pp.
372
397
.10.1016/0021-9991(77)90029-8
40.
Capecelatro
,
J.
, and
Desjardins
,
O.
,
2013
, “
Eulerian-Lagrangian Modeling of Turbulent Liquid-Solid Slurries in Horizontal Pipes
,”
Int. J. Multiphase Flow
,
55
, pp.
64
79
.10.1016/j.ijmultiphaseflow.2013.04.006
41.
Benson
,
M. J.
, and
Eaton
,
J. K.
,
2003
, “
The Effects of Wall Roughness on the Particle Velocity Field in a Fully Developed Channel Flow
,” Ph.D. thesis, Stanford University, Stanford, CA.
42.
Paris
,
A. D.
,
2001
, “
Turbulence Attenuation in a Particle-Laden Channel Flow
,” Ph.D. thesis, Stanford University, Stanford, CA.
43.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.10.1017/CBO9780511840531
44.
Marchioli
,
C.
,
Picciotto
,
M.
, and
Soldati
,
A.
,
2007
, “
Influence of Gravity and Lift on Particle Velocity Statistics and Transfer Rates in Turbulent Vertical Channel Flow
,”
Int. J. Multiphase Flow
,
33
(
3
), pp.
227
251
.10.1016/j.ijmultiphaseflow.2006.09.005
45.
Nilsen
,
C.
,
Andersson
,
H. I.
, and
Zhao
,
L.
,
2013
, “
A Voronoï Analysis of Preferential Concentration in a Vertical Channel Flow
,”
Phys. Fluids
,
25
(
11
), p.
115108
.10.1063/1.4830435
46.
Nasr
,
H.
, and
Ahmadi
,
G.
,
2007
, “
The Effect of Two-Way Coupling and Inter-Particle Collisions on Turbulence Modulation in a Vertical Channel Flow
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1507
1517
.10.1016/j.ijheatfluidflow.2007.03.007
You do not currently have access to this content.