The characteristics of the flow structures observed in the wake of a bluff body mounted vertically on the bed and normal to the flow in a shallow open channel are investigated using detached eddy simulation (DES). The flow structures in the shallow wake are identified using the λ2-criterion. A distinctive feature in the time-averaged flow field, referred to as the owl face of the first kind, is observed. The position of this spiraling structure is stable at locations close to the bed, while its rotation sense switches from stable inward to unstable outward spiraling as it moves toward the free surface, where the bed friction becomes insignificant and the flow develops into a traditional two-dimensional (2D) wake. A three-dimensional (3D) structure resulting from a horizontally oriented secondary roll-up process is observed immediately downstream of the base of the bluff body in the center of the near-wake region. In addition to the horseshoe vortex, a new structure that wraps around the bluff body in the toe region is identified, referred to as a collar vortex. The presence of the coherent structures in the near-bed region is highlighted and their influence on the wake region is discussed.

References

References
1.
Jirka
,
G. H.
, and
Uijttewaal
,
W. S. J.
, eds.,
2004
,
Shallow Flows: Research Presented at the International Symposium on Shallow Flows, Delft, Netherlands, 2003
,
Taylor & Francis
,
London
.
2.
Balachandar
,
R.
,
Ramachandran
,
S.
, and
Tachie
,
M. F.
,
2000
, “
Characteristic of Shallow Turbulent Near Wakes at Low Reynolds Numbers
,”
ASME J. Fluids Eng.
,
122
(
2
), pp.
302
308
.10.1115/1.483258
3.
Singha
,
A.
, and
Balachandar
,
R.
,
2010
, “
An Assessment of the Literature and Recent Development on the Shallow Wake in an Open Channel Flow
,”
Adv. Civil Eng.
,
2010
, p.
969407
.10.1155/2010/969407
4.
De Marchis
,
M.
, and
Ciraolo
,
G.
,
2012
, “
Wind- and Tide-Induced Currents in the Stagnone Lagoon
,”
Environ. Fluid Mech.
,
12
(
1
), pp.
81
100
.10.1007/s10652-011-9225-0
5.
Roman
,
F.
,
Stipcich
,
G.
,
Armenio
,
V.
,
Inghilesi
,
R.
, and
Corsini
,
S.
,
2010
, “
Large Eddy Simulation in Coastal Areas
,”
Int. J. Heat Fluid Flow
,
31
(
3
), pp.
327
341
.10.1016/j.ijheatfluidflow.2010.02.006
6.
Singha
,
A.
, and
Balachandar
,
R.
,
2011
, “
Coherent Structure Statistics in the Wake of a Sharp-Edged Bluff Body Placed Vertically in a Shallow Channel
,”
Fluid Dyn. Res.
,
43
(
5
), p.
055504
.10.1088/0169-5983/43/5/055504
7.
Balachandar
,
R.
, and
Ramachandran
,
S.
,
1999
, “
Turbulent Boundary Layers in Low Reynolds Number Shallow Open Channel Flow
,”
ASME J. Fluids Eng.
,
121
(
3
), pp.
684
689
.10.1115/1.2823524
8.
Singha
,
A.
, and
Balachandar
,
R.
,
2011
, “
Structure of Wake of a Sharp-Edged Bluff Body in Shallow Channel Flow
,”
J. Fluids Struct.
,
27
(
2
), pp.
233
249
.10.1016/j.jfluidstructs.2010.11.001
9.
Nasif
,
G.
,
Barron
,
R. M.
, and
Balachandar
,
R.
,
2012
, “
Simulation of Shallow Wakes in Open Channels
,”
3rd International Symposium on Shallow Flows
,
Iowa City, IA
.
10.
Negretti
,
M. E.
,
Vignoli
,
G.
,
Tubino
,
M.
, and
Brocchini
,
M.
,
2006
, “
On Shallow-Water Wakes: An Analytical Study
,”
J. Fluid Mech.
,
567
, pp.
457
475
.10.1017/S0022112006002436
11.
Chen
,
D.
, and
Jirka
,
G. H.
,
1995
, “
Experimental Study of Plane Turbulent Wakes in a Shallow Water Layer
,”
Fluid Dyn. Res.
,
16
(
1
), pp.
11
41
.10.1016/0169-5983(95)00053-G
12.
Balachandar
,
R.
,
Tachie
,
M.
, and
Chu
,
V. H.
,
1999
, “
Concentration Profiles in Shallow Turbulent Wakes
,”
ASME J. Fluids Eng.
,
121
(
1
), pp.
34
43
.10.1115/1.2822007
13.
Rao
,
S. K.
,
Sumner
,
D.
, and
Balachandar
,
R.
,
2004
, “
A Visualization Study of Fluid Structure Interaction Between a Circular Cylinder and Channel Bed
,”
J. Visualization
,
7
(
3
), pp.
187
199
.10.1007/BF03181633
14.
Nasif
,
G.
,
Barron
,
R. M.
, and
Balachandar
,
R.
,
2014
, “
DES Evaluation of Near-Wake Characteristics in a Shallow Flow
,”
J. Fluid Struct.
,
45
, pp.
153
163
.10.1016/j.jfluidstructs.2013.12.004
15.
Hammache
,
M.
, and
Gharib
,
M.
,
1991
, “
An Experimental Study of Parallel and Oblique Vortex Shedding From Circular Cylinder
,”
J. Fluid Mech.
,
232
, pp.
567
590
.10.1017/S0022112091003804
16.
Akilli
,
H.
, and
Rockwell
,
D.
,
2002
, “
Vortex Formation From a Cylinder at Shallow Flow
,”
Phys. Fluids
,
14
(9), pp.
2957
2967
.10.1063/1.1483307
17.
Hussain
,
A. K. M. F.
,
1986
, “
Coherent Structures and Turbulence
,”
J. Fluid Mech.
,
173
, pp.
303
356
.10.1017/S0022112086001192
18.
Panigrahi
,
P. K.
,
2009
, “
PIV Investigation of Flow Behind Surface Mounted Detached Square Cylinder
,”
ASME J. Fluids Eng.
,
131
(
1
), pp.
1
16
10.1115/1.3026721.
19.
Ghidaoui
,
M. S.
, and
Kolyshkin
,
A. A.
,
1999
, “
Linear Stability Analysis of Lateral Motions in Compound Open Channel
,”
J. Hydraul. Eng.
,
125
(
8
), pp.
871
880
.10.1061/(ASCE)0733-9429(1999)125:8(871)
20.
Ghidaoui
,
M. S.
,
Kolyshkin
,
A. A.
,
Liang
,
J. H.
,
Chan
,
F. C.
,
Li
,
Q.
, and
Xu
,
K.
,
2006
, “
Linear and Nonlinear Analysis of Shallow Wakes
,”
J. Fluid Mech.
,
548
, pp.
309
340
.10.1017/S0022112005007731
21.
Jin
,
Y.
, and
Herwig
,
H.
,
2013
, “
From Single Obstacles to Wall Roughness: Some Fundamental Investigations Based on DNS Results for Turbulent Channel Flow
,”
Z. Angew. Math. Phys.
,
64
(
4
), pp.
1337
1351
.10.1007/s00033-012-0287-8
22.
Kolar
,
V.
,
2007
, “
Vortex Identification: New Requirements and Limitations
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
638
652
.10.1016/j.ijheatfluidflow.2007.03.004
23.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
2nd ed.
,
Pearson Education
,
Harlow, UK
.
24.
Spalart
,
P. R.
,
Jou
,
W. H.
,
Stretlets
,
M.
, and
Allmaras
,
S. R.
,
1997
, “
Comments on the Feasibility of LES for Wings and on the Hybrid RANS/LES Approach
,”
1st AFOSR International Conference on DNS/LES
, Ruston, LA.
25.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
,
2nd ed.
,
DCW Industries
,
La Canada, CA
.
26.
Wilcox
,
D. C.
,
1994
, “
Simulation of Transition With a Two-Equation Turbulence Model
,”
AIAA J.
,
32
(
2
), pp.
247
255
.10.2514/3.59994
27.
Menter
,
F. R.
,
1992
, “
Improved Two-Equation k-ω Turbulence Models for Aerodynamic Flows
,” Report No. NASA TM-103975.
28.
Hoffmann
,
K.
, and
Chiang
,
S.
,
2000
,
Computational Fluid Dynamics
, Vol.
3
,
4th ed.
,
Engineering Education System
,
Wichita, KS
.
29.
CD-adapco
,
2012
, “
star-ccm+ V7.02.008, User Manual
.”
30.
Nasif
,
G.
,
Barron
,
R. M.
, and
Balachandar
,
R.
,
2012
, “
Wake Simulations in Shallow Flows
,”
9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics
, pp.
128
133
.
31.
Jeong
,
J.
, and
Hussain
,
F.
,
1994
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.10.1017/S0022112095000462
32.
Chakraborty
,
P.
,
Balachandar
,
S.
, and
Adrian
,
R. J.
,
2005
, “
On the Relationships Between Local Vortex Identification Schemes
,”
J. Fluid Mech.
,
535
, pp.
189
214
.10.1017/S0022112005004726
33.
Hua
,
B. L.
, and
Kline
,
P.
,
1998
, “
An Exact Criterion for the Stirring Properties of Nearly Two-Dimensional Turbulence
,”
Physica D
,
113
(
1
), pp.
98
110
.10.1016/S0167-2789(97)00143-7
34.
Wiggins
,
S.
,
2005
, “
The Dynamical System Approach to Lagrangian Transport in Oceanic Flows
,”
Annu. Rev. Fluid Mech.
,
37
, pp.
295
328
.10.1146/annurev.fluid.37.061903.175815
35.
Perry
,
A. E.
, and
Hornung
,
H. G.
,
1984
, “
Some Aspects of Three-Dimensional Separation. II. Vortex Skeletons
,”
Z. Flugwiss. Weltraumforsch.
,
8
, pp.
155
160
.
You do not currently have access to this content.