This investigation deals with some exact analytical solutions of the incompressible second grade fluid by using the method based on the separation of variables. In many cases, this method can derive exact analytical solutions easier than other methods. A family of solutions is derived in this paper, which governs scientific and engineering experimentations. The derived solutions represent the flows having streamlines as a family of ellipses, parabolas, concentric circles, and rectangular hyperbolas. From practical point of view, these flows have applications in many manufacturing processes in industry. Some physical features of the derived solutions are also illustrated by their contour plots.

References

References
1.
Dunn
,
J. E.
, and
Fosdick
,
R. L.
,
1974
, “
Thermodynamics, Stability and Boundedness of Fluids of Complexity 2 and Fluids of Second Grade
,”
Arch. Ration. Mech. Anal.
,
56
(
3
), pp.
191
252
.10.1007/BF00280970
2.
Kaloni
,
P. N.
, and
Siddiqui
,
A. M.
,
1983
, “
The Flow of a Second Grade Fluid
,”
Int. J. Eng. Sci.
,
21
(
10
), pp.
1157
1169
.10.1016/0020-7225(83)90080-0
3.
Berker
,
R.
,
1963
, “
Intégration des Équations du Mouvement d'un Fluide Visqueux Incompressible
,”
Handbuch der Physik
, Vol.
VIII/2
,
S.
Flugge
, ed.,
Springer
,
Berlin
.
4.
Berker
,
R.
,
1979
, “
A New Solution of the Navier—Stokes Equation for the Motion of a Fluid Contained Between Two Parallel Plates Rotating About the Same Axis
,”
Arch. Mech. Stosow.
,
31
(
2
), pp.
265
280
.
5.
Berker
,
R.
,
1982
, “
An Exact Solution of the Navier—Stokes Equation: The Vortex With Curvilinear Axis
,”
Int. J. Eng. Sci.
,
20
(
2
), pp.
217
230
.10.1016/0020-7225(82)90017-9
6.
Wang
,
C. Y.
,
1989
, “
Exact Solutions of the Unsteady Navier—Stokes Equations
,”
ASME Appl. Mech. Rev.
,
42
(
11
), pp.
268
282
.10.1115/1.3152400
7.
Wang
,
C. Y.
,
1990
, “
Exact Solutions of the Navier—Stokes Equations—The Generalized Beltrami Flows: Review and Extension
,”
Acta Mech.
,
81
(
1–2
), pp.
69
74
.10.1007/BF01174556
8.
Wang
,
C. Y.
,
1991
, “
Exact Solutions of the Steady-State Navier—Stokes Equations
,”
Annu. Rev. Fluid Mech.
,
23
(
1
), pp.
159
177
.10.1146/annurev.fl.23.010191.001111
9.
Drazin
,
P.
, and
Riley
,
N.
,
2006
,
The Navier—Stokes Equations: A Classification of Flows and Exact Solutions
,
Cambridge University
,
Cambridge, UK
.10.1017/CBO9780511526459
10.
Rajagopal
,
K. R.
, and
Gupta
,
A. S.
,
1984
, “
An Exact Solution for the Flow of a Non-Newtonian Fluid Past an Infinite Porous Plate
,”
Meccanica
,
19
(
2
), pp.
158
160
.10.1007/BF01560464
11.
Labropulu
,
F.
,
2000
, “
Exact Solutions of Non-Newtonian Fluid Flows With Prescribed Vorticity
,”
Acta Mech.
,
141
(
1–2
), pp.
11
20
.10.1007/BF01176804
12.
Majda
,
A. J.
, and
Bertozzi
,
A.
,
2001
,
Vorticity and Incompressible Flow
,
Cambridge University
,
Cambridge, UK
.10.1017/CBO9780511613203
13.
Le-Cao
,
K.
,
Mai-Duy
,
N.
, and
Tran-Cong
,
T.
,
2009
, “
An Effective Integrated-RBFN Cartesian-Grid Discretization for the Stream Function-Vorticity-Temperature Formulation in Nonrectangular Domains
,”
Numer. Heat Transfer, Part B
,
55
(
6
), pp.
480
502
.10.1080/10407790902827470
14.
Wright
,
G. B.
, and
Fornberg
,
B.
,
2006
, “
Scattered Node Compact Finite Difference-Type Formulas Generated From Radial Basis Functions
,”
J. Comput. Phys.
,
212
(
1
), pp.
99
123
.10.1016/j.jcp.2005.05.030
15.
Pu
,
J. H.
,
Shao
,
S.
,
Huang
,
Y.
, and
Hussain
,
K.
,
2013
, “
Evaluations of SWEs and SPH Numerical Modeling Techniques for Dam Break Flows
,”
Eng. Appl. Comput. Fluid Mech.
,
7
(
4
), pp.
544
563
.10.1080/19942060.2013.11015492
16.
Chau
,
K. W.
, and
Jiang
,
Y. W.
,
2004
, “
A Three-Dimensional Pollutant Transport Model in Orthogonal Curvilinear and Sigma Coordinate System for Pearl River Estuary
,”
Int. J. Environ. Pollut.
,
21
(
2
), pp.
188
198
.10.1504/IJEP.2004.004185
17.
Liu
,
T.
, and
Yang
,
J.
,
2014
, “
Three-Dimensional Computations of Water-Air Flow in a Bottom Spillway During Gate Opening
,”
Eng. Appl. Comput. Fluid Mech.
,
8
(
1
), pp.
104
115
.10.1080/19942060.2014.11015501
18.
Wu
,
C. L.
, and
Chau
,
K. W.
,
2006
, “
Mathematical Model of Water Quality Rehabilitation With Rainwater Utilization—A Case Study at Haigang
,”
Int. J. Environ. Pollut.
,
28
(
3–4
), pp.
534
545
.10.1504/IJEP.2006.011227
19.
Lai
,
W.
, and
Khan
,
A. A.
,
2012
, “
Discontinuous Galerkin Method for 1D Shallow Water Flows in Natural Rivers
,”
Eng. Appl. Comput. Fluid Mech.
,
6
(
1
), pp.
74
86
.10.1080/19942060.2012.11015404
20.
Chau
,
K. W.
, and
Jiang
,
Y. W.
,
2001
, “
3D Numerical Model for Pearl River Estuary
,”
ASCE J. Hydraul. Eng.
,
127
(
1
), pp.
72
82
.10.1061/(ASCE)0733-9429(2001)127:1(72)
21.
Cai
,
R.
, and
Zhang
,
N.
,
2002
, “
Explicit Analytical Solutions of Incompressible Unsteady 2–D Laminar Flow With Heat Transfer
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2623
2627
.10.1016/S0017-9310(01)00340-4
22.
Cai
,
R.
, and
Gou
,
C.
,
2006
, “
Algebraically Explicit Analytical Solutions for Unsteady Non-Newtonian Swirling Flow in an Annular Pipe
,”
Sci. China, Ser. G
,
49
(
4
), pp.
396
400
.10.1007/s11433-006-2001-3
23.
Cai
,
R.
, and
Liu
,
Q.
,
2008
, “
A New Method for Deriving Analytical Solutions of Partial Differential Equations—Algebraically Explicit Analytical Solutions of Two-Buoyancy Natural Convection in Porous Media
,”
Sci. China, Ser. G
,
51
(
11
), pp.
1733
1744
.10.1007/s11433-008-0174-7
24.
Le-Cao
,
K.
,
Mai-Duy
,
N.
,
Tran
,
C. D.
, and
Tran-Cong
,
T.
,
2011
, “
Numerical Study of Stream-Function Formulation Governing Flows in Multiply-Connected Domains by Integrated RBFs and Cartesian Grids
,”
Comput. Fluids
,
44
(
1
), pp.
32
42
.10.1016/j.compfluid.2010.11.027
25.
Saccomandi
,
G.
,
1994
, “
Some Unsteady Exact Pseudo-Plane Solutions for the Navier—Stokes Equations
,”
Meccanica
,
29
(
3
), pp.
261
269
.10.1007/BF01461439
26.
Saccomandi
,
G.
,
1994
, “
Some Exact Pseudo-Plane Solutions of the First Kind for the Navier—Stokes Equations
,”
ZAMM-Z. Angew. Math. Mech.
,
45
(
6
), pp.
978
985
.10.1007/BF00952088
27.
Rivlin
,
R. S.
, and
Ericksen
,
J. L.
,
1955
, “
Stress-Deformation Relations for Isotropic Materials
,”
J. Ration. Mech. Anal.
,
4
(
2
), pp.
323
425
.10.1512/iumj.1955.4.54011
28.
Dunn
,
J. E.
, and
Rajagopal
,
K. R.
,
1995
, “
Fluids of Differential Type: Critical Review and Thermodynamic Analysis
,”
Int. J. Eng. Sci.
,
33
(
5
), pp.
689
729
.10.1016/0020-7225(94)00078-X
29.
Destrade
,
M.
, and
Saccomandi
,
G.
,
2006
, “
Solitary and Compact-Like Shear Waves in the Bulk of Solids
,”
Phys. Rev. E
,
73
, p.
065604
.10.1103/PhysRevE.73.065604
30.
Miller
,
W.
, Jr.
,
1989
, “
Mechanism for Variable Separation in Partial Differential Equations and Their Relationship to Group Theory
,”
Symmetries and Nonlinear Phenomena
,
D.
Levi
and
P.
Winternitz
, eds.,
World Scientific
,
London
.
You do not currently have access to this content.