Numerical simulations were performed for two-dimensional viscous incompressible flow past two stationary side-by-side rotating circular cylinders at Reynolds number (Re) 100 by varying center-to-center distance between the cylinders from 1.1 to 3.5 times the diameter (D) of a cylinder and different rotational speed ratio (α) = 0.5, 1.0, and 1.25. The incompressible Navier–Stokes equations were solved using consistent flux reconstruction (CFR) technique of Roy and Bandyopadhyay (2006, “A Finite Volume Method for Viscous Incompressible Flows Using a Consistent Flux Reconstruction Scheme,” Int. J. Numer. Methods Fluids, 52(3), pp. 297–319). Eight different flow regimes were observed within the investigated parametric space. An attempt has been made to characterize the different flow regimes using vorticity contours, λ2 criterion, and force coefficients. All these above stated methods confirm the existence of eight different regimes in the flow.

References

References
1.
Badr
,
H.
,
Dennis
,
S.
, and
Young
,
P.
,
1989
, “
Steady and Unsteady Flow Past a Rotating Circular Cylinder at Low Reynolds Numbers
,”
Comput. Fluids
,
17
(
4
), pp.
579
609
.10.1016/0045-7930(89)90030-3
2.
Badr
,
H. M.
,
Coutanceau
,
M.
,
Dennis
,
S. C. R.
, and
Ménard
,
C.
,
1990
, “
Unsteady Flow Past a Rotating Circular Cylinder at Reynolds Numbers 103 and 104
,”
J. Fluid Mech.
,
220
(
11
), pp.
459
484
.10.1017/S0022112090003342
3.
Badr
,
H. M.
, and
Dennis
,
S. C. R.
,
1985
, “
Time-Dependent Viscous Flow Past an Impulsively Started Rotating and Translating Circular Cylinder
,”
J. Fluid Mech.
,
158
(
9
), pp.
447
488
.10.1017/S0022112085002725
4.
Chang
,
C.-C.
, and
Chern
,
R.-L.
,
1991
, “
Vortex Shedding From an Impulsively Started Rotating and Translating Circular Cylinder
,”
J. Fluid Mech.
,
233
(
12
), pp.
265
298
.10.1017/S0022112091000484
5.
Chen
,
Y. M.
,
Ou
,
Y. R.
, and
Pearlstein
,
A. J.
,
1993
, “
Development of the Wake Behind a Circular Cylinder Impulsively Started Into Rotatory and Rectilinear Motion
,”
J. Fluid Mech.
,
253
(
8
), pp.
449
484
.10.1017/S0022112093001867
6.
Chew
,
Y. T.
,
Cheng
,
M.
, and
Luo
,
S. C.
,
1995
, “
A Numerical Study of Flow Past a Rotating Circular Cylinder Using a Hybrid Vortex Scheme
,”
J. Fluid Mech.
,
299
(
9
), pp.
35
71
.10.1017/S0022112095003417
7.
Coutanceau
,
M.
, and
Ménard
,
C.
,
1985
, “
Influence of Rotation on the Near-Wake Development Behind an Impulsively Started Circular Cylinder
,”
J. Fluid Mech.
,
158
(
9
), pp.
399
446
.10.1017/S0022112085002713
8.
Díaz
,
F.
,
Gavaldà
,
J.
,
Kawall
,
J. G.
,
Keffer
,
J. F.
, and
Giralt
,
F.
,
1983
, “
Vortex Shedding From a Spinning Cylinder
,”
Phys. Fluids
,
26
(
12
), pp.
3454
3460
.10.1063/1.864127
9.
Hu
,
G.
,
Sun
,
D.
,
Yin
,
X.
, and
Tong
,
B.
,
1996
, “
Hopf Bifurcation in Wakes Behind a Rotating and Translating Circular Cylinder
,”
Phys. Fluids
,
8
(
7
), pp.
1972
1974
.10.1063/1.868976
10.
Ingham
,
D.
,
1983
, “
Steady Flow Past a Rotating Cylinder
,”
Comput. Fluids
,
11
(
4
), pp.
351
366
.10.1016/0045-7930(83)90020-8
11.
Ingham
,
D.
, and
Tang
,
T.
,
1990
, “
A Numerical Investigation Into the Steady Flow Past a Rotating Circular Cylinder at Low and Intermediate Reynolds Numbers
,”
J. Comput. Phys.
,
87
(
1
), pp.
91
107
.10.1016/0021-9991(90)90227-R
12.
Kang
,
S.
,
Choi
,
H.
, and
Lee
,
S.
,
1999
, “
Laminar Flow Past a Rotating Circular Cylinder
,”
Phys. Fluids
,
11
(
11
), pp.
3312
3321
.10.1063/1.870190
13.
Kumar
,
S.
,
Cantu
,
C.
, and
Gonzalez
,
B.
,
2011
, “
Flow Past a Rotating Cylinder at Low and High Rotation Rates
,”
ASME J. Fluids Eng.
,
133
(
4
), p.
41201
.10.1115/1.4003984
14.
Labraga
,
L.
,
Kahissim
,
G.
,
Keirsbulck
,
L.
, and
Beaubert
,
F.
,
2007
, “
An Experimental Investigation of the Separation Points on a Circular Rotating Cylinder in Cross Flow
,”
ASME J. Fluids Eng.
,
129
(
9
), pp.
1203
1211
.10.1115/1.2746894
15.
Mittal
,
S.
,
2001
, “
Control of Flow Past Bluff Bodies Using Rotating Control Cylinders
,”
J. Fluids Struct.
,
15
(
2
), pp.
291
326
.10.1006/jfls.2000.0337
16.
Padrino
,
J. C.
, and
Joseph
,
D. D.
,
2006
, “
Numerical Study of the Steady-State Uniform Flow Past a Rotating Cylinder
,”
J. Fluid Mech.
,
557
(
6
), pp.
191
223
.10.1017/S0022112006009682
17.
Tang
,
T.
, and
Ingham
,
D.
,
1991
, “
On Steady Flow Past a Rotating Circular Cylinder at Reynolds Numbers 60 and 100
,”
Comput. Fluids
,
19
(
2
), pp.
217
230
.10.1016/0045-7930(91)90034-F
18.
Tawfek
,
A. A.
,
Prasad
,
B. V. S. S. S.
, and
Mohanty
,
A. K.
,
1993
, “
Pressure Measurements Around a Rotating Cylinder With and Without Crossflow
,”
ASME J. Fluids Eng.
,
115
(
3
), pp.
526
528
.10.1115/1.2910171
19.
Tokumaru
,
P. T.
, and
Dimotakis
,
P. E.
,
1993
, “
The Lift of a Cylinder Executing Rotary Motions in a Uniform Flow
,”
J. Fluid Mech.
,
255
(
10
), pp.
1
10
.10.1017/S0022112093002368
20.
Chan
,
A. S.
, and
Jameson
,
A.
,
2010
, “
Suppression of the Unsteady Vortex Wakes of a Circular Cylinder Pair by a Doublet-Like Counter-Rotation
,”
Int. J. Numer. Methods Fluids
,
63
(
1
), pp.
22
39
.10.1002/fld.2075
21.
Guo
,
X.
,
Lin
,
J.
,
Tu
,
C.
, and
Wang
,
H.
,
2009
, “
Flow Past Two Rotating Circular Cylinders in a Side-by-Side Arrangement
,”
J. Hydrodyn., Ser. B
,
21
(
2
), pp.
143
151
.10.1016/S1001-6058(08)60131-6
22.
Kumar
,
S.
,
Gonzalez
,
B.
, and
Probst
,
O.
,
2011
, “
Flow Past Two Rotating Cylinders
,”
Phys. Fluids
,
23
(
1
), p.
014102
.10.1063/1.3528260
23.
Ueda
,
Y.
,
Sellier
,
A.
,
Kida
,
T.
, and
Nakanishi
,
M.
,
2003
, “
On the Low-Reynolds-Number Flow About Two Rotating Circular Cylinders
,”
J. Fluid Mech.
,
495
(
11
), pp.
255
281
.10.1017/S002211200300627X
24.
Yoon
,
H. S.
,
Kim
,
J. H.
,
Chun
,
H. H.
, and
Choi
,
H. J.
,
2007
, “
Laminar Flow Past Two Rotating Circular Cylinders in a Side-by-Side Arrangement
,”
Phys. Fluids
,
19
(
12
), p.
128103
.10.1063/1.2786373
25.
Yoon
,
H. S.
,
Chun
,
H. H.
,
Kim
,
J. H.
, and
Park
,
I. R.
,
2009
, “
Flow Characteristics of Two Rotating Side-by-Side Circular Cylinder
,”
Comput. Fluids
,
38
(
2
), pp.
466
474
.10.1016/j.compfluid.2008.09.002
26.
Chan
,
A. S.
,
Dewey
,
P. A.
,
Jameson
,
A.
,
Liang
,
C.
, and
Smits
,
A. J.
,
2011
, “
Vortex Suppression and Drag Reduction in the Wake of Counter-Rotating Cylinders
,”
J. Fluid Mech.
,
679
(
7
), pp.
343
382
.10.1017/jfm.2011.134
27.
Zdravkovich
,
M. M.
,
1977
, “
Review: Review of Flow Interference Between Two Circular Cylinders in Various Arrangements
,”
ASME J. Fluids Eng.
,
99
(
4
), pp.
618
633
.10.1115/1.3448871
28.
Wilkins
,
S. J.
,
Hogan
,
J. D.
, and
Hall
,
J. W.
,
2013
, “
Vortex Shedding in a Tandem Circular Cylinder System With a Yawed Downstream Cylinder
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071202
.10.1115/1.4023949
29.
Vakil
,
A.
, and
Green
,
S. I.
,
2013
, “
Numerical Study of Two-Dimensional Circular Cylinders in Tandem at Moderate Reynolds Numbers
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071204
.10.1115/1.4024045
30.
Roy
,
A.
, and
Bandyopadhyay
,
G.
,
2006
, “
A Finite Volume Method for Viscous Incompressible Flows Using a Consistent Flux Reconstruction Scheme
,”
Int. J. Numer. Methods Fluids
,
52
(
3
), pp.
297
319
.10.1002/fld.1180
31.
Harichandan
,
A. B.
, and
Roy
,
A.
,
2010
, “
Numerical Investigation of Low Reynolds Number Flow Past Two and Three Circular Cylinders Using Unstructured Grid CFR Scheme
,”
Int. J. Heat Fluid Flow
,
31
(
2
), pp.
154
171
.10.1016/j.ijheatfluidflow.2010.01.007
32.
Mavriplis
,
D. J.
,
2003
, “
Revisiting the Least-Squares Procedure for Gradient Reconstruction on Unstructured Meshes
,”
AIAA
Paper No. 2003-3986. 10.2514/6.2003-3986
33.
Supradeepan
,
K.
, and
Roy
,
A.
,
2014
, “
Characterisation and Analysis of Flow Over Two Side by Side Cylinders for Different Gaps at Low Reynolds Number: A Numerical Approach
,”
Phys. Fluids
,
26
(
6
), p.
105108
.10.1063/1.4883484
34.
Vollmers
,
H.
,
2001
, “
Detection of Vortices and Quantitative Evaluation of Their Main Parameters From Experimental Velocity Data
,”
Meas. Sci. Technol.
,
12
(
8
), pp.
1199
1207
.10.1088/0957-0233/12/8/329
You do not currently have access to this content.