Lattice Boltzmann equation with Bhatnagar–Gross–Krook (BGK) model is applied to simulate unsteady laminar flow around a confined square obstacle, in order to study the vortex shedding and their interaction in the flow on the mass transfer in the parietal zone of a channel. The model was tested by comparing to an experimental study via standard particle image velocimetry (PIV). A post-processing was used to well extract instantaneous vortices contained in the flow downstream obstacles. A sensor with zero concentration on the surface is placed on the channel wall to study the effect of wake instabilities on the parietal mass transfer.

References

References
1.
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
329
364
.10.1146/annurev.fluid.30.1.329
2.
Flekkoy
,
E. G.
,
1993
, “
Lattice Bathnagar-Gross-Krook Models for Miscible Fluids
,”
Phys. Rev. E
,
47
(
6
), pp.
4247
4257
.10.1103/PhysRevE.47.4247
3.
Shi
,
B.
, and
Guo
,
Z.
,
2011
, “
Lattice Boltzmann Simulation for Non-Linear Convection-Diffusion Equations
,”
Comput. Math. Appl.
,
61
(
12
), pp.
3443
3452
.10.1016/j.camwa.2011.01.041
4.
Williamson
,
C. H. K.
,
1996
, “
Vortex Dynamics in the Cylinder Wake
,”
Annu. Rev. Fluid Mech.
,
28
(
1
), pp.
477
539
.10.1146/annurev.fl.28.010196.002401
5.
Zdravkovich
,
M. M.
,
1997
,
Flow Around Circular Cylinder: A Comprehensive Guide Through Flow Phenomena, Experiments, Applications, Mathematical Models, and Computer Simulations
, Vol.
1
,
Oxford University Press, New York
.
6.
Zdravkovich
,
M. M.
,
2003
, Flow Around Circular Cylinder: A Comprehensive Guide Through Flow Phenomena, Experiments, Applications, Mathematical Models, and Computer Simulations, Vol.
2
,
Oxford University Press, New York
.
7.
Rehimi
,
F.
,
Aloui
,
F.
,
Ben Nasrallah
,
S.
,
Doubliez
,
L.
, and
Legrand
,
J.
,
2008
, “
Experimental Investigation of a Confined Flow Downstream of a Circular Cylinder Centred Between Two Parallel Walls
,”
J. Fluids Struct.
,
24
(
6
), pp.
855
882
.10.1016/j.jfluidstructs.2007.12.011
8.
Abassi
,
W.
,
Aloui
,
F.
,
Ben Nasrallah
,
S.
, and
Legrand
,
J.
,
2011
, “
Lattice Boltzmann Method Used to Simulate an Unsteady Flow Around an Obstacle in Laminar Regime
,”
Paper No. AJK2011-13005
, pp.
3047
3055
.
9.
Thomas
,
D. G.
,
1966
, “
Forced Convection Mass Transfer: Part III. Increased Mass Transfer From a Flat Plate Caused by the Wake From Cylinders Located Near the Edge of the Boundary Layer
,”
AIChE J.
,
12
(
1
), pp.
124
130
.10.1002/aic.690120124
10.
Abassi
,
W.
,
Aloui
,
F.
,
Ben Nasrallah
,
S.
, and
Legrand
,
J.
,
2012
, “
Use of Lattice-Boltzmann Method in Mass Transfer for the Wall Shear Stress Calculation in an Unsteady Laminar Flow Downstream of a Cylinder Located in a 2D Rectangular Channel
,”
ASME
Paper No. FEDSM2012-72232.10.1115/FEDSM2012-72232
11.
Coutanceau
,
M.
, and
Defaye
,
J. R.
,
1991
, “
Circular Cylinder Wake Configurations: A Flow Visualization Survey
,”
ASME Appl. Mech. Rev.
,
44
(
6
), pp.
255
305
.10.1115/1.3119504
12.
Okajima
,
A.
,
1982
, “
Strouhal Numbers of Rectangular Cylinders
,”
J. Fluid Mech.
,
123
(
1
), pp.
379
398
.10.1017/S0022112082003115
13.
Graftieaux
,
L.
,
Michard
,
M.
, and
Grosjean
,
N.
,
2001
, “
Combining PIV, POD and Vortex Identification Algorithms for the Study of Unsteady Turbulent Swirling Flows
,”
Measure. Sci. Tech.
,
12
(
9
), pp.
1422
1429
.10.1088/0957-0233/12/9/307
14.
Klekar
,
K. M.
, and
Patankar
,
S. V.
,
1992
, “
Numerical Prediction of Vortex Shedding Behind Square Cylinders
,”
Int. J. Numer. Methods Fluids
,
14
(
3
), pp.
327
341
.10.1002/fld.1650140306
15.
Davis
,
R. W.
, and
Moore
,
E. F.
,
1982
, “
A Numerical Study of Vortex Shedding From Rectangles
,”
J. Fluid Mech.
,
116
(
3
), pp.
475
506
.10.1017/S0022112082000561
16.
Zovatto
,
L.
, and
Pedrizzetti
,
G.
,
2001
, “
Flow About a Circular Cylinder Between Parallel Walls
,”
J. Fluid Mech.
,
440
(
1
), pp.
1
25
.10.1017/S0022112001004608
17.
Sumer
,
B. M.
,
Jensen
,
B. L.
, and
Fredsoe
,
J.
,
1991
, “
Effect of a Plane Boundary on Oscillatory Flow Around a Circular Cylinder
,”
J. Fluid. Mech.
,
225
(
1
), pp.
271
300
.10.1017/S0022112091002057
18.
Abassi
,
W.
,
Aloui
,
F.
,
Ben Nasrallah
,
S.
,
Legrand
,
J.
, and
Labraga
,
L.
,
2013
, “
Use of the POD and the Coherent Structure Detection Criteria to Study the Flow Dynamics Downstream a Confined Square Obstacle
,”
ASME
Paper No. FEDSM2013-16309.10.1115/FEDSM2013-16309
19.
Brede
,
M.
,
Eckelmann
,
H.
, and
Rockwell
,
D.
,
1996
, “
On Secondary Vortices in the Cylinder Wake at Right Reynolds Numbers
,”
J. Fluids Struct.
,
22
(
8
), pp.
757
771
.10.1063/1.868986
20.
Zheng
,
G. S.
, and
Worek
,
W. M.
,
1996
, “
Methods of Heat and Mass Transfer Enhancement in Film Evaporation
,”
Int. J. Heat Mass Transfer
,
39
(
1
), pp.
97
108
.10.1016/S0017-9310(96)85009-5
21.
Berger
,
F. P.
,
Hau
,
K.-F.
, and
Hau
,
F.-L.
,
1979
, “
Local Mass/Heat Transfer Distribution on Surfaces Roughened With Small Square Ribs
,”
Int. J. Heat Mass Transfer
,
22
(
12
), pp.
1645
1656
.10.1016/0017-9310(79)90081-4
22.
Deliyang
,
Y.
,
Shehata
,
A.
,
Modi
,
V.
, and
West
,
A. C.
,
1997
, “
Mass Transfer to a Channel Wall Downstream of a Cylinder
,”
Int. J. Heat Mass Transfer
,
40
(
18
), pp.
4263
4271
.10.1016/S0017-9310(97)00091-4
23.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
,
1954
, “
A Model for Collision Process in Gases
,”
Phys. Rev.
,
94
(
3
), pp.
511
525
.10.1103/PhysRev.94.511
24.
Skordos
,
P. A.
,
1993
, “
Initial and Boundary Conditions for the Lattice Boltzmann Method
,”
Phys. Rev. E
,
48
(
6
), pp.
4823
4842
.10.1103/PhysRevE.48.4823
25.
He
,
X.
, and
Luo
,
L. S.
,
1997
, “
Theory of Lattice Boltzmann Method: From the Boltzmann Equation to Lattice Boltzmann Equation
,”
Phys. Rev. E
,
56
(
6
), pp.
6811
6817
.10.1103/PhysRevE.56.6811
26.
He
,
X.
,
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit
,”
J. Comput. Phys.
,
146
(
1
), pp.
282
300
.10.1006/jcph.1998.6057
27.
Shan
,
X.
,
1997
, “
Simulation of Rayleigh-Bénard Convection Using a Lattice Boltzmann Method
,”
Phys. Rev. E
,
55
(
2
), pp.
2780
2788
.10.1103/PhysRevE.55.2780
28.
Rothman
,
D. H.
, and
Zaleski
,
S.
,
1997
,
Lattice-Gas Cellular Automata: Simple Models of Complex Hydrodynamics
,
Cambridge University
,
Cambridge, UK
.
29.
Breuer
,
M.
,
Bernsdorf
,
J.
,
Zeiser
,
T.
, and
Durst
,
F.
,
2000
, “
Accurate Computations of Laminar Flow Past a Square Cylinder Based on Two Different Methods: Lattice-Boltzmann and Finite-Volume
,”
Int. J. Heat Fluid Flow
,
21
(
2
), pp.
186
196
.10.1016/S0142-727X(99)00081-8
30.
Zhou
,
J. G.
,
2003
,
Lattice Boltzmann Method for Shallow Water Flows
,
Springer-Verlag
,
Berlin
.10.1007/978-3-662-08276-8
31.
Zou
,
Q.
, and
He
,
X.
,
1997
, “
On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model
,”
Phys. Fluid
,
9
(
6
), pp.
1591
1598
.10.1063/1.869307
32.
Lundgren
,
T. S.
,
Sparrow
,
E. M.
, and
Starr
,
J. B.
,
1964
, “
Pressure Drop Due to the Entrance Region in Ducts of Arbitrary Cross Section
,”
J. Basic Eng.
,
86
(
3
), pp.
620
626
.10.1115/1.3653186
33.
Paranthoën
,
P.
,
Browne
,
L. W. B.
,
Le Masson
,
S.
,
Dumouchel
,
F.
, and
Lecordier
,
J. C.
,
1999
, “
Characteristics of the Near Wake of a Cylinder at Low Reynolds Numbers
,”
Eur. J. Mech. B/Fluids
,
18
(
4
), pp.
659
674
.10.1016/S0997-7546(99)00105-3
34.
Réhimi
,
F.
,
2006
, “
Experimental Characterization of Vortices Behind a Confined Cylinder With PIV and Polarography
,” Ph.D. thesis, Faculty of Sciences and Techniques,
University of Nantes
,
Nantes, France
.
35.
Guerrouache
,
M. S.
,
2000
, “
Numerical Study of the Instability of Benard-Karman Behind a Fixed Cylinder or Periodic Motion: Dynamic Flow and Chaotic Advection
,” Ph.D. thesis,
Polytechnic School of the University of Nantes
,
Nantes, France
.
36.
Strawn
,
R.
,
Kenwright
,
C.
, and
Ahmad
,
D. N.
,
1999
, “
Computer Visualisation of Vortex Wake Systems
,”
AIAA J.
,
37
(
4
), pp.
511
512
.10.2514/2.744
37.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
(
1
), pp.
69
94
.10.1017/S0022112095000462
38.
Hunt
,
J. C. R.
,
Wray
,
A.
, and
Moin
,
P.
,
1988
, “
Eddies, Stream and Convergence Zones in Turbulent Flows
,”
Center for Turbulence Research, Report CRT-S88
, pp.
193
208
.
39.
Koched
,
A.
,
Pavageau
,
M.
, and
Aloui
,
F.
,
2011
, “
Experimental Investigations of Transfer Phenomena in a Confined Plane Turbulent Impinging Water Jet
,”
ASME J. Fluids Eng.
,
133
(
6
), p.
061204
.10.1115/1.4004090
40.
Aloui
,
F.
,
Berrich
,
E.
, and
Pierrat
,
D.
,
2011
, “
Experimental and Numerical Investigations of a Turbulent Flow Behavior in Isolated and Nonisolated Conical Diffusers
,”
ASME J. Fluids Eng.
,
133
(
1
), p.
011201
.10.1115/1.4003236
41.
Lévêque
,
M. A.
,
1928
, “
Les Lois de Transmission de la Chaleur par Convection
,”
Ann. Mines
,
13
, pp.
381
412
.
42.
Berrich
,
E.
,
Aloui
,
F.
, and
Legrand
,
J.
,
2013
, “
Analysis of Inverse Method Applied on Sandwich Probes
,”
ASME J. Fluids Eng.
,
135
(
1
), p.
011401
.10.1115/1.4007888
You do not currently have access to this content.