Poiseuille flow and thermal transpiration of a rarefied gas between parallel plates with nonuniform surface properties in the transverse direction are studied based on kinetic theory. We considered a simplified model in which one wall is a diffuse reflection boundary and the other wall is a Maxwell-type boundary on which the accommodation coefficient varies periodically and smoothly in the transverse direction. The spatially two-dimensional (2D) problem in the cross section is studied numerically based on the linearized Bhatnagar–Gross–Krook–Welander (BGKW) model of the Boltzmann equation. The flow behavior, i.e., the macroscopic flow velocity and the mass flow rate of the gas as well as the velocity distribution function, is studied over a wide range of the mean free path of the gas and the parameters of the distribution of the accommodation coefficient. The mass flow rate of the gas is approximated by a simple formula consisting of the data of the spatially one-dimensional (1D) problems. When the mean free path is large, the distribution function assumes a wavy variation in the molecular velocity space due to the effect of a nonuniform surface property of the plate.

References

References
1.
Cercignani
,
C.
,
1963
, “
Plane Poiseuille Flow and Knudsen Minimum Effect
,”
Rarefied Gas Dynamics
, Vol.
II
,
J. A.
Laurmann
, ed.,
Academic
,
New York
, pp.
92
101
.
2.
Cercignani
,
C.
, and
Daneri
,
A.
,
1963
, “
Flow of a Rarefied Gas Between Parallel Plates
,”
J. Appl. Phys.
,
34
(
12
), pp.
3509
3513
.10.1063/1.1729249
3.
Niimi
,
H.
,
1971
, “
Thermal Creep Flow of Rarefied Gas Between Two Parallel Plates
,”
J. Phys. Soc. Jpn.
,
30
(
2
), pp.
572
574
.10.1143/JPSJ.30.572
4.
Loyalka
,
S. K.
,
1971
, “
Kinetic Theory of Thermal Transpiration and Mechanocaloric Effect. I
,”
J. Chem. Phys.
,
55
(
9
), pp.
4497
4503
.10.1063/1.1676780
5.
Kanki
,
T.
, and
Iuchi
,
S.
,
1973
, “
Poiseuille Flow and Thermal Creep of a Rarefied Gas Between Parallel Plates
,”
Phys. Fluids
,
16
(
5
), pp.
594
599
.10.1063/1.1694393
6.
Loyalka
,
S. K.
,
1974
, “
Comments on “Poiseuille Flow and Thermal Creep of a Rarefied Gas Between Parallel Plates”
,”
Phys. Fluids
,
17
(
5
), pp.
1053
1055
.10.1063/1.1694820
7.
Ohwada
,
T.
,
Sone
,
Y.
, and
Aoki
,
K.
,
1989
, “
Numerical Analysis of the Poiseuille and Thermal Transpiration Flows Between Two Parallel Plates on the Basis of the Boltzmann Equation for a Hard-Sphere Molecules
,”
Phys. Fluids A
,
1
(
12
), pp.
2042
2049
.10.1063/1.857478
8.
Sone
,
Y.
, and
Itakura
,
E.
,
1990
, “
Analysis of Poiseuille and Thermal Transpiration Flows for Arbitrary Knudsen Numbers by a Modified Knudsen Number Expansion Method and Their Database
,”
J. Vac. Soc. Jpn.
,
33
(
3
), pp.
92
94
(in Japanese).10.3131/jvsj.33.92
9.
Sharipov
,
F.
, and
Seleznev
,
V.
,
1998
, “
Data on Internal Rarefied Gas Flows
,”
J. Phys. Chem. Ref. Data
,
27
(
3
), pp.
657
706
.10.1063/1.556019
10.
Sharipov
,
F.
,
2002
, “
Application of the Cercignani–Lampis Scattering Kernel to Calculations of Rarefied Gas Flows
,”
Eur. J. Mech. B/Fluids
,
21
(
1
), pp.
113
123
.10.1016/S0997-7546(01)01160-8
11.
Karniadakis
,
G.
,
Beskok
,
A.
, and
Aluru
,
N.
,
2005
,
Microflows and Nanoflows: Fundamentals and Simulation
,
Springer–Verlag
,
New York
.
12.
Sone
,
Y.
,
2007
,
Molecular Gas Dynamics
,
Birkhäuser
,
New York
.
13.
Chen
,
C. C.
,
Chen
,
I. K.
,
Liu
,
T.-P.
, and
Sone
,
Y.
,
2007
, “
Thermal Transpiration for the Linearized Boltzmann Equation
,”
Commun. Pure Appl. Math.
,
60
(
2
), pp.
147
163
.10.1002/cpa.20167
14.
Sharipov
,
F.
, and
Bertoldo
,
G.
,
2009
, “
Poiseuille Flow and Thermal Creep Based on the Boltzmann Equation With the Lennard–Jones Potential Over a Wide Range of the Knudsen Number
,”
Phys. Fluids
,
21
(
6
), p.
067101
.10.1063/1.3156011
15.
Takata
,
S.
, and
Funagane
,
H.
,
2011
, “
Poiseuille and Thermal Transpiration Flows of a Highly Rarefied Gas: Over-Concentration in the Velocity Distribution Function
,”
J. Fluid Mech.
,
669
, pp.
242
259
.10.1017/S0022112010005021
16.
Doi
,
T.
,
2012
, “
Effect of Weak Gravitation on the Plane Poiseuille Flow of a Highly Rarefied Gas
,”
Z. Angew. Math. Phys.
,
63
(
6
), pp.
1091
1102
.10.1007/s00033-012-0213-0
17.
Doi
,
T.
,
2012
, “
Effect of Weak Gravitation on the Plane Thermal Transpiration of a Slightly Rarefied Gas
,”
Fluid Dyn. Res.
,
44
(
6
), p.
065503
.10.1088/0169-5983/44/6/065503
18.
Veijola
,
T.
,
Kuisma
,
H.
, and
Lahdenperä
,
J.
,
1998
, “
The Influence of Gas-Surface Interaction on Gas-Film Damping in a Silicon Accelerometer
,”
Sens. Actuators, A
,
66
, pp.
83
92
.10.1016/S0924-4247(97)01732-9
19.
Cercignani
,
C.
,
Lampis
,
M.
, and
Lorenzani
,
S.
,
2004
, “
Variational Approach to Gas Flows in Microchannels
,”
Phys. Fluids
,
16
(
9
), pp.
3426
3437
.10.1063/1.1764700
20.
Cercignani
,
C.
,
Lampis
,
M.
, and
Lorenzani
,
S.
,
2004
, “
Plane Poiseuille Flow With Symmetric and Nonsymmetric Gas-Wall Interactions
,”
Transp. Theory Stat. Phys.
,
33
(
5–7
), pp.
545
561
.10.1081/TT-200053939
21.
Scherer
,
C. S.
,
Filho
,
J. F. P.
, and
Barichello
,
L. B.
,
2009
, “
An Analytical Approach to the Unified Solution of Kinetic Equations in Rarefied Gas Dynamics
,”
Z. Angew. Math. Phys.
,
60
(
1
), pp.
70
115
.10.1007/s00033-008-7084-4
22.
Doi
,
T.
,
2014
, “
Plane Thermal Transpiration of a Rarefied Gas Between Two Walls of Maxwell-Type Boundaries With Different Accommodation Coefficients
,”
ASME J. Fluids Eng.
,
136
(
8
), p.
081203
.10.1115/1.4026926
23.
Doi
,
T.
,
2014
, “
Plane Poiseuille Flow and Thermal Transpiration of a Highly Rarefied Gas Between the Two Walls of Maxwell-Type Boundaries With Different Accommodation Coefficients: Effect of a Weak External Force
,”
Z. Angew. Math. Phys.
(in press).10.1007/s00033-014-0454-1
24.
Seagate Technology
,
2013
, “
Discrete Track Media
,” U.S. Patent No. 20130017413 A1.
25.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
,
1954
, “
A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems
,”
Phys. Rev.
,
94
(
3
), pp.
511
525
.10.1103/PhysRev.94.511
26.
Welander
,
P.
,
1954
, “
On the Temperature Jump in a Rarefied Gas
,”
Ark. Fys.
,
7
, pp.
507
553
.
27.
Chu
,
C. K.
,
1965
, “
Kinetic-Theoretic Description of the Formation of a Shock Wave
,”
Phys. Fluids
,
8
(
8
), pp.
12
22
.10.1063/1.1761077
28.
Sharipov
,
F.
, and
Kalempa
,
D.
,
2008
, “
Oscillatory Couette Flow at Arbitrary Oscillation Frequency Over the Whole Range of the Knudsen Number
,”
Microfluid. Nanofluid.
,
4
(
5
), pp.
363
374
.10.1007/s10404-007-0185-0
29.
Doi
,
T.
,
2010
, “
Numerical Analysis of the Oscillatory Couette Flow of a Rarefied Gas on the Basis of the Linearized Boltzmann Equation for a Hard Sphere Molecular Gas
,”
Z. Angew. Math. Phys.
,
61
(
5
), pp.
811
822
.10.1007/s00033-009-0055-6
30.
Doi
,
T.
,
2011
, “
Numerical Analysis of the Time-Dependent Energy and Momentum Transfers in a Rarefied Gas Between Two Parallel Planes Based on the Linearized Boltzmann Equation
,”
ASME J. Heat Transfer
,
133
(
2
), p.
022404
.10.1115/1.4002441
31.
Wakabayashi
,
M.
,
Ohwada
,
T.
, and
Golse
,
F.
,
1996
, “
Numerical Analysis of the Shear and Thermal Creep Flows of a Rarefied Gas Over the Plane Wall of a Maxwell-Type Boundary on the Basis of the Linearized Boltzmann Equation for Hard-Sphere Molecules
,”
Eur. J. Mech. B/Fluids
,
15
(
2
), pp.
175
201
.
32.
Sone
,
Y.
,
1969
, “
Asymptotic Theory of Flow of Rarefied Gas Over a Smooth Boundary I
,”
Rarefied Gas Dynamics
, Vol.
1
,
L.
Trilling
, and
H. Y.
Wachman
, eds.,
Academic
,
New York
, pp.
243
253
.
33.
Sone
,
Y.
,
1971
, “
Asymptotic Theory of Flow of Rarefied Gas Over a Smooth Boundary II
,”
Rarefied Gas Dynamics
, Vol.
2
,
D.
Dini
, ed.,
Editrice Tecnino Scientifica
,
Pisa
, pp.
737
749
.
34.
Sone
,
Y.
,
2002
,
Kinetic Theory and Fluid Dynamics
,
Birkhäuser
,
New York
.
You do not currently have access to this content.