Particle motion due to ultrasonic acoustic radiation in a macroscale, multiwavelength acoustic chamber is investigated and compared with available theories. Primary acoustic radiation force theory has been extensively developed to predict single particle motion in a microscale, single-node acoustic chamber/channel. There is a need to investigate the applicability of this theory to macroscale, multiwavelength acoustic channels utilizing the acoustic radiation force for separating polydispersed particles. A particle-tracking velocimetry (PTV) approach for measuring individual particle motion is developed specifically to track particles as they densify at an acoustic pressure node. Particle motion is tracked over the lifetime of their motion to a node. Good agreement between the experimental and theoretical results is observed in the early stages of particle motion, where particles can be considered individually. Only in the densified region of the acoustic pressure node is there some mismatch with theory. The acoustic energy density of the acoustic chamber, a parameter intrinsically associated with the system by the theory, is also determined experimentally for different conditions and shown to be constant for all investigated system settings. The investigation demonstrates the capability of available theory in predicting the motion of polydispersed particles in macroscale, multiwavelength acoustic chambers.

References

References
1.
Grosch
,
M.
,
Burger
,
W.
,
Handl
,
B.
,
Doblhoff-Dier
,
O.
,
Gaida
,
T.
, and
Schmatz
,
C.
,
1998
, “
Ultrasonic Separation of Suspended Particles—Part III: Application in Biotechnology
,”
Acustica
,
84
(
5
), pp.
815
822
.
2.
Kapishnikov
,
S.
,
Kantsler
,
V.
, and
Steinberg
,
V.
,
2006
, “
Continuous Particle Size Separation and Size Sorting Using Ultrasound in a Microchannel
,”
J. Stat. Mech.: Theory Exp.
,
2006
(
1
), p.
P01012
.10.1088/1742-5468/2006/01/P01012
3.
Ju
,
Y. R.
,
Geng
,
Z. X.
,
Zhang
,
L. Q.
,
Wang
,
W.
, and
Li
,
Z. H.
,
2011
, “
High-Efficiency Blood Separation Utilizing Spiral Filtration Microchannel With Gradually Varied Width
,”
Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS)
, pp.
298
301
.
4.
Dayton
,
P. A.
,
Zhao
,
S.
,
Bloch
,
S. H.
,
Schumann
,
P.
,
Penrose
,
K.
,
Matsunaga
,
T. O.
,
Zutshi
,
R.
,
Doinikov
,
A.
, and
Ferrara
,
K. W.
,
2006
, “
Application of Ultrasound to Selectively Localize Nanodroplets for Targeted Imaging and Therapy
,”
Mol. Imaging
,
5
(
3
), pp.
160
174
.
5.
Lum
,
A. F. H.
,
Borden
,
M. A.
,
Dayton
,
P. A.
,
Kruse
,
D. E.
,
Simon
,
S. I.
, and
Ferrara
,
K. W.
,
2006
, “
Ultrasound Radiation Force Enables Targeted Deposition of Model Drug Carriers Loaded on Microbubbles
,”
J. Control. Release
,
111
(
1–2
), pp.
128
134
.10.1016/j.jconrel.2005.11.006
6.
Weller
,
G. E. R.
,
Villanueva
,
F. S.
,
Tom
,
E. M.
, and
Wagner
,
W. R.
,
2005
, “
Targeted Ultrasound Contrast Agents: In Vitro Assessment of Endothelial Dysfunction and Multi-targeting to ICAM-1 and Sialyl Lewisx
,”
Biotechnol. Bioeng.
,
92
(
6
), pp.
780
788
.10.1002/bit.20625
7.
King
,
L. V.
,
1934
, “
On the Acoustic Radiation Pressure on Spheres
,”
Proc. R. Soc. Lond. A
,
147
(
861
), pp.
212
240
.10.1098/rspa.1934.0215
8.
Settnes
,
M.
, and
Bruus
,
H.
,
2012
, “
Forces Acting on a Small Particle in an Acoustical Field in a Viscous Fluid
,”
Phys. Rev. E
,
85
(
1
), p.
016327
.10.1103/PhysRevE.85.016327
9.
Yosioka
,
K.
, and
Kawasima
,
Y.
,
1955
, “
Acoustic Radiation Pressure on a Compressible Sphere
,”
Acustica
,
5
(
3
), pp.
167
173
.
10.
Nilsson
,
A.
,
Petersson
,
F.
,
Jönsson
,
H.
, and
Laurell
,
T.
,
2004
, “
Acoustic Control of Suspended Particles in Micro Fluidic Chips
,”
Lab Chip
,
4
(
2
), pp.
131
135
.10.1039/b313493h
11.
Petersson
,
F.
,
Nilsson
,
A.
,
Holm
,
C.
,
Jonsson
,
H.
, and
Laurell
,
T.
,
2004
, “
Separation of Lipids From Blood Utilizing Ultrasonic Standing Waves in Microfluidic Channels
,”
Analyst
,
129
(
10
), pp.
938
943
.10.1039/b409139f
12.
Glynne-Jones
,
P.
,
Boltryk
,
R. J.
,
Hill
,
M.
,
Harris
,
N. R.
, and
Baclet
,
P.
,
2009
, “
Robust Acoustic Particle Manipulation: A Thin-Reflector Design for Moving Particles to a Surface
,”
J. Acoust. Soc. Am.
,
126
(
3
), pp.
EL75
EE79
.10.1121/1.3186800
13.
Ho
,
L.
,
Braun
,
K.
,
Fabris
,
R.
,
Hoefel
,
D.
,
Morran
,
J.
,
Monis
,
P.
, and
Drikas
,
M.
,
2012
, “
Comparison of Drinking Water Treatment Process Streams for Optimal Bacteriological Water Quality
,”
Water Res.
,
46
(
12
), pp.
3934
3942
.10.1016/j.watres.2012.04.041
14.
Hafez
,
A.
,
Khedr
,
M.
, and
Gadallah
,
H.
,
2007
, “
Wastewater Treatment and Water Reuse of Food Processing Industries. Part II: Techno-Economic Study of a Membrane Separation Technique
,”
Desalination
,
214
(
1–3
), pp.
261
272
.10.1016/j.desal.2006.11.010
15.
Juliano
,
P.
,
Kutter
,
A.
,
Cheng
,
L. J.
,
Swiergon
,
P.
,
Mawson
,
R.
, and
Augustin
,
M. A.
,
2011
, “
Enhanced Creaming of Milk Fat Globules in Milk Emulsions by the Application of Ultrasound and Detection by Means of Optical Methods
,”
Ultrason. Sonochem.
,
18
(
5
), pp.
963
973
.10.1016/j.ultsonch.2011.03.003
16.
Lipkens
,
B.
,
Dionne
,
J.
,
Trask
,
A.
,
Szczur
,
B.
,
Stevens
,
A.
, and
Rietman
,
E.
,
2010
, “
Separation of Micron-Sized Particles in Macro-scale Cavities by Ultrasonic Standing Waves
,”
Phys. Procedia
,
3
(
1
), pp.
263
268
.10.1016/j.phpro.2010.01.035
17.
Hawkes
,
J. J.
, and
Radel
,
S.
,
2013
, “
Acoustofluidics 22: Multi-wavelength Resonators, Applications and Considerations
,”
Lab Chip
,
13
(
4
), pp.
610
627
.10.1039/c2lc41206c
18.
Bruus
,
H
.,
2012
, “
Acoustofluidics 10: Scaling Laws in Acoustophoresis
,”
Lab Chip
,
12
(
9
), pp.
1578
1586
.10.1039/c2lc21261g
19.
Spengler
,
J. F.
,
Jekel
,
M.
,
Christensen
,
K. T.
,
Adrian
,
R. J.
,
Hawkes
,
J. J.
, and
Coakley
,
W. T.
,
2001
, “
Observation of Yeast Cell Movement and Aggregation in a Small-Scale MHz-Ultrasonic Standing Wave Field
,”
Bioseparation
,
9
(
6
), pp.
329
341
.10.1023/A:1011113826753
20.
Woodside
,
S. M.
,
Bowen
,
B. D.
, and
Piret
,
J. M.
,
1997
, “
Measurement of Ultrasonic Forces for Particle–Liquid Separations
,”
AIChE J.
,
43
(
7
), pp.
1727
1736
.10.1002/aic.690430710
21.
Barnkob
,
R.
,
Augustsson
,
P.
,
Laurell
,
T.
, and
Bruus
,
H.
,
2010
, “
Measuring the Local Pressure Amplitude in Microchannel Acoustophoresis
,”
Lab Chip
,
10
(
5
), pp.
563
570
.10.1039/b920376a
22.
Augustsson
,
P.
,
Barnkob
,
R.
,
Wereley
,
S. T.
,
Bruus
,
H.
, and
Laurell
,
T.
,
2011
, “
Automated and Temperature-Controlled Micro-PIV Measurements Enabling Long-Term-Stable Microchannel Acoustophoresis Characterization
,”
Lab Chip
,
11
(
24
), pp.
4152
4164
.10.1039/c1lc20637k
23.
Gorkov
,
L. P.
,
1962
, “
On the Forces Acting on a Small Particle in an Acoustic Field in an Ideal Fluid
,”
Sov. Phys. Doklady
,
6
, pp.
773
775
.
24.
Setayeshgar
,
A.
,
Lipsett
,
M. G.
,
Koch
,
C. R.
, and
Nobes
,
D. S.
,
2013
, “
Measurement of Particle Dynamics in a Coherent Acoustic Field
,”
10th International Symposium on Particle Image Velocimetry
.
25.
Kundt
,
A.
, and
Lehmann
,
O.
,
1874
, “
Longitudinal Vibrations and Acoustic Figures in Cylindrical Columns of Liquids
,”
Ann. Phys. Chem.
,
153
, pp.
1
11
.10.1002/andp.18742290902
26.
Bruus
,
H.
,
2012
, “
Acoustofluidics 7: The Acoustic Radiation Force on Small Particles
,”
Lab Chip
,
12
(
6
), pp.
1014
1021
.10.1039/c2lc21068a
27.
Trampler
,
F.
,
Sonderhoff
,
S. A.
,
Pui
,
P. W. S.
,
Kilburn
,
D. G.
, and
Piret
,
J. M.
,
1994
, “
Acoustic Cell Filter for High Density Perfusion Culture of Hybridoma Cells
,”
Nat. Biotech.
,
12
(
3
), pp.
281
284
.10.1038/nbt0394-281
28.
Hawkes
,
J. J.
,
Coakley
,
W. T.
,
Groschl
,
M.
,
Benes
,
E.
,
Armstrong
,
S.
,
Tasker
,
P. J.
, and
Nowotny
,
H.
,
2002
, “
Single Half-Wavelength Ultrasonic Particle Filter: Predictions of the Transfer Matrix Multilayer Resonator Model and Experimental Filtration Results
,”
J. Acoust. Soc. Am.
,
111
(
3
), pp.
1259
1266
.10.1121/1.1448341
29.
Otsu
,
N.
,
1979
, “
A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst., Man, and Cybernetics
,
9
(
1
), pp.
62
66
.10.1109/TSMC.1979.4310076
30.
Pavlidis
,
T.
,
1982
,
Algorithms for Graphics and Image Processing
,
Computer Science
,
Rockville, MD
.
31.
Hassan
,
Y. A.
, and
Canaan
,
R. E.
,
1991
, “
Full-Field Bubbly Flow Velocity Measurements Using a Multiframe Particle Tracking Technique
,”
Exp. Fluids
,
12
(
1–2
), pp.
49
60
.10.1007/BF00226565
32.
Doinikov
,
A. A.
,
2001
, “
Acoustic Radiation Interparticle Forces in a Compressible Fluid
,”
J. Fluid Mech.
,
444
(
1
), pp.
1
21
.10.1017/S0022112001005055
33.
Hancock
,
A.
,
2001
, “
Observation of Forces on Microparticles in Acoustic Standing Waves
,” M.Sc. thesis, University of California Davis, Davis, CA.
34.
Feng
,
Y.
,
Goree
,
J.
, and
Liu
,
B.
,
2007
, “
Accurate Particle Position Measurement From Images
,”
Rev. Sci. Instrum.
,
78
(
5
), p.
053704
.10.1063/1.2735920
You do not currently have access to this content.