The stability of a two-dimensional, incompressible droplet, with two cylindrical-caps that is held in a channel under gravity, is investigated through the development of an analytical model based on the Young–Laplace relationship. The droplet state is measured by the location of its center of mass, where the center of mass is derived analytically by assuming a circular shape for the droplet cap. The derived analytical expressions are validated through the use of computational fluid dynamics (CFD). When a droplet is suspended under no gravity conditions, there is a critical droplet volume Vcr where asymmetric droplet states appear in addition to the basic symmetric states when the drop volume V > Vcr. When V < Vcr, the symmetric droplet states are stable, and when V > Vcr, the symmetric states are unstable and the asymmetric states are stable. With gravity, the pitchfork bifurcation diagram of the droplet system changes into two separate branches of equilibrium states: The primary branch describes a gradual and stable change of the droplet from a symmetric to asymmetric state as the droplet volume is increased. The secondary branch appears at a modified critical volume Vmcr and describes two additional asymmetric states when V > Vmcr. The large-amplitude states along the secondary branch are stable whereas the small-amplitude states are unstable. There exists a maximum volume on each of the primary and secondary branch where the droplet no longer sustains its weight and where the maximum volume on the primary branch is smaller than the maximum volume on the secondary branch. There is a critical value for the strength of the gravity force, relative to the capillary force, that provides the condition at which a droplet state exists only at the primary branch; the secondary branch is unstable. Analytical solutions show good agreement with CFD results as long as the circular shape assumption of the droplet cap is approximately valid.

References

References
1.
Lopez
,
C. A.
, and
Hirsa
,
A. H.
,
2008
, “
Fast Focusing Using a Pinned-Contact Oscillating Liquid Lens
,”
Nat. Photon.
,
2
(
10
), pp.
610
613
.10.1038/nphoton.2008.198
2.
Teh
,
S. Y.
,
Lin
,
R.
,
Hung
,
L. H.
, and
Lee
,
A. P.
,
2008
, “
Droplet Microfluidics
,”
Lab Chip
,
8
(
2
), pp.
198
220
.10.1039/b715524g
3.
Theisen
,
E. A.
,
Vogel
,
M. J.
,
Lopez
,
C. A.
,
Hirsa
,
A. H.
, and
Steen
,
P. H.
,
2007
, “
Capillary Dynamics of Coupled Spherical-Cap Droplets
,”
J. Fluid Mech.
,
580
, pp.
495
505
.10.1017/S0022112007005514
4.
Hirsa
,
A. H.
,
Lopez
,
C. A.
,
Laytin
,
M. A.
,
Vogel
,
M. J.
, and
Steen
,
P. H.
,
2005
, “
Low-Dissipation Capillary Switches at Small Scales
,”
Appl. Phys. Lett.
,
86
(
1
), p.
014106
.10.1063/1.1845572
5.
Slobozhanin
,
L. A.
, and
Alexander
,
J. I. D.
,
2006
, “
The Stability of Two Connected Drops Suspended From the Edges of Circular Holes
,”
J. Fluid Mech.
,
563
, pp.
319
355
.10.1017/S002211200600125X
6.
Slater
,
D. M.
,
Lopez
,
C. A.
,
Hirsa
,
A. H.
, and
Steen
,
P. H.
,
2008
, “
Chaotic Motions of a Forced Droplet-Droplet Oscillator
,”
Phys. Fluids
,
20
(
9
), pp.
1
8
.10.1063/1.2982372
7.
Ren
,
H. W.
,
Xu
,
S.
, and
Wu
,
S. T.
,
2010
, “
Effects of Gravity on the Shape of Liquid Droplets
,”
Opt. Commun.
,
283
(
17
), pp.
3255
3258
.10.1016/j.optcom.2010.04.045
8.
Krupenkin
,
T.
,
Yang
,
S.
, and
Mach
,
P.
,
2003
, “
Tunable Liquid Microlens
,”
Appl. Phys. Lett.
,
82
(
3
), pp.
316
318
.10.1063/1.1536033
9.
Grilli
,
S.
,
Miccio
,
L.
,
Vespini
,
V.
,
Finizio
,
A.
,
De
Nicola
,
S.
, and
Ferraro
,
P.
,
2008
, “
Liquid Micro-Lens Array Activated by Selective Electrowetting on Lithium Niobate Substrates
,”
Opt. Exp.
,
16
(
11
), pp.
8084
8093
.10.1364/OE.16.008084
10.
Ren
,
H. W.
,
Xianyu
,
H. Q.
,
Xu
,
S.
, and
Wu
,
S. T.
,
2008
, “
Adaptive Dielectric Liquid Lens
,”
Opt. Exp.
,
16
(
19
), pp.
14954
14960
.10.1364/OE.16.014954
11.
Smith
,
N. R.
,
Abeysinghe
,
D. C.
,
Haus
,
J. W.
, and
Heikenfeld
,
J.
,
2006
, “
Agile Wide-Angle Beam Steering With Electrowetting Microprisms
,”
Opt. Exp.
,
14
(
14
), pp.
6557
6563
.10.1364/OE.14.006557
12.
Reza
,
S. A.
, and
Riza
,
N. A.
,
2009
, “
A Liquid Lens-Based Broadband Variable Fiber Optical Attenuator
,”
Opt. Commun.
,
282
(
7
), pp.
1298
1303
.10.1016/j.optcom.2008.12.029
13.
Dorvee
,
J. R.
,
Derfus
,
A. M.
,
Bhatia
,
S. N.
, and
Sailor
,
M. J.
,
2004
, “
Manipulation of Liquid Droplets Using Amphiphilic, Magnetic One-Dimensional Photonic Crystal Chaperones
,”
Nat. Mater.
,
3
(
12
), pp.
896
899
.10.1038/nmat1253
14.
Castrejon-Pita
,
A. A.
,
Castrejon-Pita
,
J. R.
, and
Hutchings
, I
. M.
,
2012
, “
Breakup of Liquid Filaments
,”
Phys. Rev. Lett.
,
108
(
7
), p.
074506
.10.1103/PhysRevLett.108.074506
15.
Chen
,
A. U.
,
Notz
,
P. K.
, and
Basaran
,
O. A.
,
2002
, “
Computational and Experimental Analysis of Pinch-Off and Scaling
,”
Phys. Rev. Lett.
,
88
(
17
), p.
174501
.10.1103/PhysRevLett.88.174501
16.
Rodriguez-Valverde
,
M. A.
,
Cabrerizo-Vilchez
,
M. A.
, and
Hidalgo-Alvarez
,
R.
,
2003
, “
The Young-Laplace Equation Links Capillarity With Geometrical Optics
,”
Eur. J. Phys.
,
24
(
2
), pp.
159
168
.10.1088/0143-0807/24/2/356
17.
Ku
,
T. C.
,
Ramsey
,
J. H.
, and
Clinton
,
W. C.
,
1968
, “
Calculation of Liquid Droplet Profiles From Closed-Form Solution of Young-Laplace Equation
,”
IBM J. Res. Dev.
,
12
(
6
), pp.
441
447
.10.1147/rd.126.0441
18.
Chen
,
H.
,
2008
, “
Two-Dimensional Simulation of Stripping Breakup of a Water Droplet
,”
AIAA J.
,
46
(
5
), pp.
1135
1143
.10.2514/1.31286
19.
White
,
F. M.
,
2006
,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
20.
Fluent
, “
Fluent 6.3 Guide
,”
Fluent Inc
,
New York
.
21.
Nichita
,
B. A.
,
Zun
, I
.
, and
Thome
,
J. R.
,
2010
, “
A Level Set Method Coupled With a Volume of Fluid Method for Modeling of Gas-Liquid Interface in Bubbly Flow
,”
ASME J. Fluids Eng.
,
132
(
8
), p. 081302.10.1115/1.4002166
22.
Fachinotti
, V
. D.
, and
Cardona
,
A.
,
2007
, “
A Fixed-Mesh Eulerian-Lagrangian Approach for Stress Analysis in Continuous Casting
,”
Int. J. Numer. Methods Eng.
,
70
(
6
), pp.
728
755
.10.1002/nme.1907
23.
Das
,
T. K.
,
1997
, “
Prediction of Jet Breakup Length in Liquid-Liquid Systems Using the Rayleigh-Tomotika Analysis
,”
Atom. Sprays
,
7
(
5
), pp.
549
559
.
24.
Gao
,
Z. L.
,
Vassalos
,
D.
, and
Gao
,
Q. X.
,
2010
, “
Numerical Simulation of Water Flooding Into a Damaged Vessel's Compartment by the Volume of Fluid Method
,”
Ocean Eng.
,
37
(
16
), pp.
1428
1442
.10.1016/j.oceaneng.2010.07.010
25.
Hoffmann
,
A. C.
, and
Vandenbogaard
,
H. A.
,
1995
, “
A Numerical Investigation of Bubbles Rising at Intermediate Reynolds and Large Weber Numbers
,”
Ind. Eng. Chem. Res.
,
34
(
1
), pp.
366
372
.10.1021/ie00040a040
26.
Popov
,
G.
,
Vatistas
,
G. H.
,
Sankar
,
S.
, and
Sankar
,
T. S.
,
1993
, “
Numerical-Simulation of Viscous-Liquid Sloshing in Arbitrarily Shaped Reservoirs
,”
AIAA J.
,
31
(
1
), pp.
10
11
.10.2514/3.11311
27.
Harlow
,
F. H.
, and
Welch
,
J. E.
,
1965
, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid With Free Surface
,”
Phys. Fluids
,
8
(
12
), pp.
2182
2189
.10.1063/1.1761178
28.
Sun
,
D. L.
,
Xu
,
J. L.
, and
Wang
,
L.
,
2012
, “
Development of a Vapor-Liquid Phase Change Model for Volume-of-Fluid Method in Fluent
,”
Int. Commun. Heat Mass Transfer
,
39
(
8
), pp.
1101
1106
.10.1016/j.icheatmasstransfer.2012.07.020
29.
Jaworski
,
Z.
, and
Pianko-Oprych
,
P.
,
2002
, “
Two-Phase Laminar Flow Simulations in a Kenics Static Mixer—Standard Eulerian and Lagrangian Approaches
,”
Chem. Eng. Res. Des.
,
80
(
8
), pp.
910
916
.10.1205/026387602321143462
30.
Banerjee
,
R.
,
2007
, “
A Numerical Study of Combined Heat and Mass Transfer in an Inclined Channel Using the VOF Multiphase Model
,”
Numer. Heat Transfer, Part A: Applic.
,
52
(
2
), pp.
163
183
.10.1080/10407780601149862
31.
Acharya
,
S.
,
Baliga
,
B. R.
,
Karki
,
K.
,
Murthy
,
J. Y.
,
Prakash
,
C.
, and
Vanka
,
S. P.
,
2007
, “
Pressure-Based Finite-Volume Methods in Computational Fluid Dynamics
,”
ASME J. Heat Transfer
,
129
(
4
), pp.
407
424
.10.1115/1.2716419
32.
Chorin
,
A. J.
,
1968
, “
Numerical Solution of Navier-Stokes Equations
,”
Math. Comput.
,
22
(
104
), pp.
745
762
.10.1090/S0025-5718-1968-0242392-2
33.
Tannehill
,
J. C.
,
Anderson
,
D. A.
, and
Pletcher
,
R. H.
,
1997
,
Computational Fluid Mechanics and Heat Transfer, Series in Computational and Physical Processes in Mechanics and Thermal Sciences
,
Taylor & Francis
,
Washington, DC
.
34.
Tecplot
, “
Tecplot 360 Guide
,”
Tecplot Inc.
,
Bellevue, WA
.
35.
Gradshtein
,
I. S.
,
Ryzhik
,
I. M.
, and
Jeffrey
,
A.
,
1980
,
Table of Integrals, Series, and Products
,
Academic Press
,
New York
.
You do not currently have access to this content.