Richtmyer–Meshkov instability (RMI) has long been the subject of interest for analytical, numerical, and experimental studies. In comparing results of experiment with numerics, it is important to understand the limitations of experimental techniques inherent in the chosen method(s) of data acquisition. We discuss results of an experiment where a laminar, gravity-driven column of heavy gas is injected into surrounding light gas and accelerated by a planar shock. A popular and well-studied method of flow visualization (using glycol droplet tracers) does not produce a flow pattern that matches the numerical model of the same conditions, while revealing the primary feature of the flow developing after shock acceleration: the pair of counter-rotating vortex columns. However, visualization using fluorescent gaseous tracer confirms the presence of features suggested by the numerics; in particular, a central spike formed due to shock focusing in the heavy-gas column. Moreover, the streamwise growth rate of the spike appears to exhibit the same scaling with Mach number as that of the counter-rotating vortex pair (CRVP).

References

References
1.
Richtmyer
,
R. D.
,
1960
, “
Taylor Instability in Shock Acceleration of Compressible Fluids
,”
Commun. Pure Appl. Math.
,
13
(
2
), pp.
297
319
.10.1002/cpa.3160130207
2.
Meshkov
,
E. E.
,
1969
, “
Instability of the Interface of Two Gases Accelerated by a Shock Wave
,”
Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza
,
4
(
5
), pp.
151
157
.10.1007/BF01015969
3.
Strutt
,
J. W.
,
1883
, “
Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density
,”
Proc. London Math. Soc.
,
14
, pp.
170
177
.10.1112/plms/s1-14.1.170
4.
Taylor
,
G.
,
1950
, “
The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to their Planes
,”
Proc. R. Soc. London, Ser. A
,
201
(
1065
), pp.
192
196
.10.1098/rspa.1950.0052
5.
Lewis
,
D.
,
1950
, “
The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to their Planes. Part II
,”
Proc. R. Soc. London, Ser. A
,
202
(
1068
), pp.
81
96
.10.1098/rspa.1950.0086
6.
Zhang
,
Q.
, and
Sohn
,
S.-I.
,
1997
, “
Nonlinear Theory of Unstable Fluid Mixing Driven by Shock Wave
,”
Phys. Fluids
,
9
, pp.
1106
1124
.10.1063/1.869202
7.
Saffman
,
P.
, and
Meiron
,
D.
,
1989
, “
Kinetic Energy Generated by the Incompressible Richtmyer–Meshkov Instability in a Continuously Stratified Fluid
,”
Phys. Fluids A
,
1
, pp.
1767
1771
.10.1063/1.857503
8.
Jacobs
,
J.
, and
Sheeley
,
J.
,
1996
, “
Experimental Study of Incompressible Richtmyer–Meshkov Instability
,”
Phys. Fluids
,
8
, pp.
405
415
.10.1063/1.868794
9.
Brouillette
,
M.
,
2002
, “
The Richtmyer–Meshkov Instability
,”
Annu. Rev. Fluid Mech.
,
34
, pp.
445
468
.10.1146/annurev.fluid.34.090101.162238
10.
Kane
,
J.
,
Drake
,
R.
, and
Remington
,
B.
,
1999
, “
An Evaluation of the Richtmyer–Meshkov Instability in Supernova Remnant Formation
,”
Astrophys. J.
,
511
(
1
), pp.
335
340
.10.1086/306685
11.
Wu
,
C.
, and
Roberts
,
P.
,
1999
, “
Richtmyer–Meshkov Instability and the Dynamics of the Magnetosphere
,”
Geophys. Res. Lett.
,
26
(
6
), pp.
655
658
.10.1029/1999GL900093
12.
Goncharov
,
V.
,
1999
, “
Theory of the Ablative Richtmyer–Meshkov Instability
,”
Phys. Rev. Lett.
,
82
, pp.
2091
2094
.10.1103/PhysRevLett.82.2091
13.
Fishbine
,
B.
,
2002
, “
Code Validation Experiments
,” Los Alamos Research Quarterly, pp.
6
14
.
14.
Jacobs
,
J.
,
Jones
,
M.
, and
Niederhaus
,
C.
,
1995
, “
Experimental Studies of Richtmyer–Meshkov Instability
,”
5th International Workshop on Compressible Turbulent Mixing
,
Stony Brook, NY
, July 18–21, pp.
18
21
.
15.
Prestridge
,
K.
,
Vorobieff
,
P.
,
Rightley
,
P.
, and
Benjamin
,
R.
,
2000
, “
Validation of an Instability Growth Model Using Particle Image Velocimetry Measurements
,”
Phys. Rev. Lett.
,
84
(
19
), pp.
4353
4356
.10.1103/PhysRevLett.84.4353
16.
Jacobs
,
J.
,
Klein
,
D.
,
Jenkins
,
D.
, and
Benjamin
,
R.
,
1993
, “
Instability Growth Patterns of a Shock-Accelerated Thin Fluid Layer
,”
Phys. Rev. Lett.
,
70
(
5
), pp.
583
586
.10.1103/PhysRevLett.70.583
17.
Budzinski
,
J. M.
,
Benjamin
,
R. F.
, and
Jacobs
,
J. W.
,
1994
, “
Influence of Initial Conditions on the Flow Patterns of a Shock-Accelerated Thin Fluid Layer
,”
Phys. Fluids
,
6
, p.
3510
.10.1063/1.868447
18.
Vetter
,
M.
, and
Sturtevant
,
B.
,
1995
, “
Experiments on the Richtmyer–Meshkov Instability of an Air/SF6 Interface
,”
Shock Waves
,
4
(
5
), pp.
247
252
.10.1007/BF01416035
19.
Anderson
,
M.
,
2011
, “
Oblique Shock Interactions With Perturbed Density Interfaces
,” Ph.D. dissertation, The University of New Mexico, Albuquerque, NM.
20.
Anderson
,
M.
,
Vorobieff
,
P.
,
Conroy
,
J.
,
Truman
,
C.
,
White
,
R.
, and
Kumar
,
S.
,
2014
, “
An Experimental and Numerical Study of Shock Interaction With a Gas Column Seeded With Droplets
,” Shock Waves (submitted).
21.
Crepeau
,
J.
,
Needham
,
C. E.
, and
Hikida
,
S.
,
2001
, “
Second Order Hydrodynamic Automatic Mesh Refinement Code (SHAMRC): Volume I, Methodology
,” Applied Research Associates, Inc.
22.
Crepeau
,
J.
,
Happ
,
H.
,
Hikida
,
S.
, and
Needham
,
C. E.
,
2001
, “
Second Order Hydrodynamic Automatic Mesh Refinement Code (SHAMRC): Volume II, User's Manual
,” Applied Research Associates, Inc.
23.
Johnson
,
E.
,
2009
, “
Planar and Oblique Shock Wave Interaction With a Droplet Seeded Gas Cylinder
,” Master's thesis, The University of New Mexico, Albuquerque, NM.
24.
Vorobieff
,
P.
,
Anderson
,
M.
,
Conroy
,
J.
,
White
,
R.
,
Truman
,
C. R.
, and
Kumar
,
S.
,
2011
, “
Vortex Formation in a Shock-Accelerated Gas Induced by Particle Seeding
,”
Phys. Rev. Lett.
,
106
(
18
), p.
184503
.10.1103/PhysRevLett.106.184503
25.
Vorobieff
,
P.
,
Tomkins
,
C.
,
Kumar
,
S.
,
Goodenough
,
C.
,
Mohamed
,
N.
, and
Benjamin
,
R.
,
2004
, “
Secondary Instabilities in Shock-Induced Transition to Turbulence
,”
Advances in Fluid Mechanics
, V,
A.
Mendes
,
M.
Rahman
, and
C.
Brebbia
, eds., WIT Press, Boston, MA, pp.
139
148
.
26.
Orlicz
,
G.
,
2012
, “
Incident Shock Mach Number Effects on Richtmyer–Meshkov Mixing With Simultaneous Density and Velocity Measurements
,” Ph.D. dissertation, The University of New Mexico, Albuquerque, NM.
You do not currently have access to this content.