In this paper, we derive some exact solutions of the equations governing the steady plane motions of an incompressible second grade fluid. For this purpose, the vorticity and stream functions both are expressed in terms of complex variables and complex functions. The derived solutions represent the flows having streamlines as a family of ellipses, parabolas, concentric circles, and rectangular hyperbolas. Some physical features of the derived solutions are also illustrated by their contour plots.

References

References
1.
Dunn
,
J. E.
, and
Fosdick
,
R. L.
,
1974
, “
Thermodynamics, Stability and Boundedness of Fluids of Complexity 2 and Fluids of Second Grade
,”
Arch. Ration. Mech. Anal.
,
56
, pp.
191
252
.10.1007/BF00280970
2.
Kaloni
,
P. N.
, and
Siddiqui
,
A. M.
,
1983
, “
The Flow of a Second Grade Fluid
,”
Int. J. Eng. Sci.
,
21
(
10
), pp.
1157
1169
.10.1016/0020-7225(83)90080-0
3.
Rajagopal
,
K. R.
,
1984
, “
On the Creeping Flow of the Second-Order Fluid
,”
J. Non-Newtonian Fluid Mech.
,
15
, pp.
239
246
.10.1016/0377-0257(84)80008-7
4.
Erdogan
,
M. E.
,
1995
, “
Plane Surface Suddenly Set in Motion in a Non-Newtonian Fluid
,”
Acta Mech.
,
108
, pp.
179
187
.10.1007/BF01177337
5.
Rajagopal
,
K. R.
, and
Gupta
,
A. S.
,
1984
, “
An Exact Solution for the Flow of a Non-Newtonian Fluid Past an Infinite Porous Plate
,”
Mechanica
,
19
, pp.
158
160
.10.1007/BF01560464
6.
Labropulu
,
F.
,
2000
, “
Exact Solutions of Non-Newtonian Fluid Flows With Prescribed Vorticity
,”
Acta Mech.
,
141
, pp.
11
20
.10.1007/BF01176804
7.
Tong
,
D.
, and
Liu
,
Y.
,
2005
, “
Exact Solutions for the Unsteady Rotational Flow of a Non-Newtonian Fluid in an Annular Pipe
,”
Int. J. Eng. Sci.
,
43
, pp.
281
289
.10.1016/j.ijengsci.2004.09.007
8.
Tan
,
W.
,
Xian
,
F.
, and
Wei
,
L.
,
2002
, “
Exact Solution for the Unsteady Couette Flow of the Generalized Second Grade Fluid
,”
Chin. Sci. Bull.
,
47
, pp.
1226
1228
.10.1007/BF03183841
9.
Rivlin
,
R. S.
, and
Ericksen
,
J. L.
,
1955
, “
Stress-Deformation Relations for Isotropic Materials
,”
J. Ration. Mech. Anal.
,
4
, pp.
323
425
.
10.
Dunn
,
J. E.
, and
Rajagopal
,
K. R.
,
1995
, “
Fluids of Differential Type: Critical Review and Thermodynamic Analysis
,”
Int. J. Eng. Sci.
,
33
, pp.
689
729
.10.1016/0020-7225(94)00078-X
11.
Stallybrass
,
M. P.
,
1983
, “
A Class of Exact Solutions of the Navier–Stokes Equations. Plane Unsteady Flow
,”
Lett. Appl. Eng. Sci.
21
(
2
), pp.
179
186
.10.1016/0020-7225(83)90010-1
You do not currently have access to this content.