An experimental investigation has been conducted to identify the effects of pressure gradient and surface roughness on turbulent boundary layers. In Part II, smooth- and rough-surface turbulent boundary layers with and without adverse pressure gradient (APG) are presented at a fixed Reynolds number (based on the length of flat plate) of 900,000. Flat-plate boundary layer measurements have been conducted using a single-sensor, hot-wire probe. For smooth surfaces, compared to the zero pressure gradient (ZPG) boundary layer, the APG boundary layer has a higher mean velocity defect throughout the boundary layer and lower friction coefficient. APG decreases the streamwise normal Reynolds stress for y less than 0.4 times the boundary layer thickness and increases it slightly in the outer region. For rough surfaces, APG reduces the roughness effects of increasing the mean velocity defect and normal Reynolds stress for y less than 23 and 28 times the average roughness height, respectively. Consistently, for the same roughness, APG decreases the integrated streamwise turbulent kinetic energy. APG also decreases the roughness effect on the friction coefficient, roughness Reynolds number, and roughness shift. Compared to the ZPG boundary layers, the roughness effects on integral boundary layer parameters—boundary layer thickness and momentum thickness—are weaker under APG. Thus, contrary to the favorable pressure gradient (FPG) in part I, APG reduces the roughness effects on turbulent boundary layers.

References

References
1.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(2), p.
021004
.10.1115/1.3066315
2.
Back
,
S. C.
,
Sohn
,
J. H.
, and
Song
,
S. J.
,
2010
, “
Impact of Surface Roughness on Compressor Cascade Performance
,”
ASME J. Fluids Eng.
,
132
, p.
064502
.10.1115/1.4001788
3.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(4), pp.
509
536
.10.1115/1.2929110
4.
Spalart
,
P. R.
, and
Watmuff
,
J. H.
,
1993
, “
Experimental and Numerical Study of a Turbulent Boundary Layer With Pressure Gradients
,”
J. Fluid Mech.
,
249
, pp.
337
371
.10.1017/S002211209300120X
5.
Krogstad
,
P. A.
, and
Skare
,
P. E.
,
1995
, “
Influence of a Strong Adverse Pressure Gradient on the Turbulent Structure in a Boundary Layer
,”
Phys. Fluids
,
7
, pp.
2014
2024
.10.1063/1.868513
6.
Nagano
,
Y.
,
Tsuji
,
T.
, and
Houra
,
T.
,
1998
, “
Structure of Turbulent Boundary Layer Subjected to Adverse Pressure Gradient
,”
Int. J. Heat Fluid Flow
,
19
, pp.
563
572
.10.1016/S0142-727X(98)10013-9
7.
Lee
,
J. H.
, and
Sung
,
H. J.
,
2008
, “
Effects of an Adverse Pressure Gradient on a Turbulent Boundary Layer
,”
Int. J. Heat Fluid Flow
,
29
, pp.
568
578
.10.1016/j.ijheatfluidflow.2008.01.016
8.
Perry
,
A. E.
, and
Joubert
,
P. N.
,
1963
, “
Rough-Wall Boundary Layers in Adverse Pressure Gradients
,”
J. Fluid Mech.
,
17
, pp.
193
206
.10.1017/S0022112063001245
9.
Moore
,
W. F.
,
1951
, “
An Experimental Investigation of the Boundary Layer Development Along a Rough Surface
,” Ph.D. dissertation, State University of Iowa, Iowa City, IA.
10.
Bons
,
J. P.
, and
McClain
,
S. T.
,
2004
, “
The Effect of Real Turbine Roughness With Pressure Gradient on Heat Transfer
,”
ASME J. Turbomach.
,
126
, pp.
385
394
.10.1115/1.1738120
11.
Pailhas
,
G.
,
Touvet
,
Y.
, and
Aupoix
,
B.
,
2008
, “
Effects of Reynolds Number and Adverse Pressure Gradient on a Turbulent Boundary Layer Developing on a Rough Surface
,”
J. Turbul.
,
9
, pp.
1
24
.10.1080/14685240802562020
12.
Tay
,
G. F. K.
,
Kuhn
,
D. C. S.
, and
Tachie
,
M. F.
,
2009
, “
Influence of Adverse Pressure Gradient on Rough-Wall Turbulent Flows
,”
Int. J. Heat Fluid Flow
,
30
, pp.
249
265
.10.1016/j.ijheatfluidflow.2009.01.001
13.
Schreiber
,
H. A.
,
Steinert
,
W.
, and
Küsters
,
B.
,
2002
, “
Effects of Reynolds Number and Free-Stream Turbulence on Boundary Layer Transition in a Compressor Cascade
,”
ASME J. Turbomach.
,
124
(3), pp.
1
9
.10.1115/1.1413471
14.
Dong
,
Y.
, and
Cumpsty
,
N. A.
,
1990
, “
Compressor Blade Boundary Layers: Part 2—Measurements With Incident Wakes
,”
ASME J. Turbomach.
,
112
(2), pp.
231
240
.10.1115/1.2927637
15.
Dees
,
J. E.
, and
Bogard
,
D. G.
,
2008
, “
Effects of Regular and Random Roughness on the Heat Transfer and Skin Friction Coefficient on the Suction Side of a Gas Turbine Vane
,”
ASME J. Turbomach.
,
130
(4), p.
041012
.10.1115/1.2812338
16.
Coles
,
D. E.
,
1956
, “
The Law of the Wake in the Turbulent Boundary Layer
,”
J. Fluid Mech.
,
1
, pp.
191
226
.10.1017/S0022112056000135
17.
Osaka
,
H.
,
Kameda
,
T.
, and
Mochizuki
,
S.
,
1998
, “
Re-Examination of the Reynolds Number-Effects on the Mean Flow Quantities in a Smooth Wall Turbulent Boundary Layer
,”
JSME Int. J. Ser. B
,
41
, pp.
123
129
.10.1299/jsmeb.41.123
18.
Castillo
,
L.
,
Seo
,
J.
,
Hangan
,
H.
, and
Johansson
,
T. G.
,
2004
, “
Smooth and Rough Turbulent Boundary Layers at High Reynolds Number
,”
Exp. Fluids
,
36
, pp.
759
774
.10.1007/s00348-003-0758-y
19.
Bergstrom
,
D. J.
,
Akinlade
,
O. G.
, and
Tachie
,
M. F.
,
2005
, “
Skin Friction Correlation for Smooth and Rough Wall Turbulent Boundary Layers
,”
ASME J. Fluids Eng.
,
127
(6), pp.
1146
1153
.10.1115/1.2073288
You do not currently have access to this content.