A numerical investigation of accelerated boundary layers (BL) has been performed using linear and nonlinear eddy viscosity models (EVM). The acceleration parameters (KS) investigated the range between 1.5 × 10−6 and 3.0 × 10−6. The one-equation (k-l), Spalart Allmaras (SA), and the two-equation Menter Shear Stress Transport (SST) and Chien models in their standard forms are found to be insensitive to acceleration. Nevertheless, proposed modifications for the SA, Chien, and the k-l models significantly improved predictions. The major improvement was achieved by modifying the damping functions in these models and also an analogous source term, E, for the Chien model. Encouraging agreement with measurements is found using the Launder Sharma (LS), cubic and explicit algebraic stress models (EASM) in their standard forms. The cubic model best predicted the turbulence quantities. Investigations confirm that it is practical for Reynolds-Average Navier–Stokes (RANS) models to capture reversion from the turbulent to laminar state albeit for equilibrium sink type flows.

References

References
1.
Narasimha
,
R.
, and
Sreenivasan
,
K.
,
1979
, “Advances in Applied Mechanics - Relaminarization of Fluid Flows,”
19
, pp. 221–309.
2.
Stenberg
,
J.
,
1954
, “
The Transition From a Turbulent to Laminar Boundary Layer
,” Ballistic Research Laboratory, Report No. 906.
3.
Jones
,
W.
,
1967
, “
Strongly Accelerated Turbulent Boundary Layers
,” Ph.D. thesis, Imperial College, University of London, London.
4.
So
,
R. M. C.
, and
Mellor
,
G. L.
,
1973
, “
Experiment on Convex Curvature Effects in Turbulent Boundary Layers
,”
J. Fluid Mech.
,
60
(
01
), pp.
43
62
.10.1017/S0022112073000030
5.
Halleen
,
R. M.
, and
Johnston
,
J. P.
,
1967
, “The Influence of Rotation on Flow in a Long Rectangular Channel: An Experimental Study,” Thermosci. Div., Dept. Mech. Eng., Stanford University, Report No. MD 18.
6.
Perkins
,
H.
, and
Worsoe-Schmidt
,
P.
,
1965
, “
Turbulent Heat and Momentum Transfer for Gases in a Circular Tube at Wall to Bulk Temperature Ratios to Seven
,”
Int. J. Heat Mass Transfer
,
8
(
7
), pp.
1011
1031
.10.1016/0017-9310(65)90085-2
7.
Murgatroyd
,
W.
,
1953
, “
CXLII. Experiments on Magneto-Hydrodynamic Channel Flow
,”
Philos. Mag.
,
44
(
359
), pp.
1348
1354
.
8.
Dutton
,
R.
,
1958
, “
The Effects of Distributed Suction on the Development of Turbulent Boundary Layers
,” HM Stationery Office.
9.
Kearney
,
D.
,
Kays
,
W.
, and
Moffat
,
R.
,
1973
, “
Heat Transfer to a Strongly Accelerated Turbulent Boundary Layer: Some Experimental Results, Including Transpiration
,”
Int. J. Heat Mass Transfer
,
16
(
6
), pp.
1289
1305
.10.1016/0017-9310(73)90136-1
10.
Launder
,
B.
,
1964
, “
Laminarisation of the Turbulent Boundary Layer by Acceleration
,”
Gas Turbine Laboratory
,
Massachusetts Institute of Technology
,
MA
, Report. No. 77.
11.
Kays
,
W. M.
,
Moffat
,
R. J.
, and
Thielbahr
,
W. H.
,
1969
, “
Heat Transfer to the Highly Accelerated Turbulent Boundary Layer With and Without Mass Addition
,”
ASME J. Heat Transfer
,
92
(
3
), pp.
499
505
.10.1115/1.3449701
12.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
Some Properties of Sink-Flow Turbulent Boundary Layers
,”
J. Fluid Mech.
,
56
(
2
), pp.
337
351
.10.1017/S0022112072002903
13.
Launder
,
B. E.
, and
Jones
,
W. P.
,
1969
, “
On the Prediction of Laminarization
,” Brit. A.R.C., C.P., Report No. 1036.
14.
Jones
,
M.
,
Marusic
,
I.
, and
Perry
,
A.
,
2001
, “
Evolution and Structure of Sink-Flow Turbulent Boundary Layers
,”
J. Fluid Mech.
,
428
, pp.
1
27
.10.1017/S0022112000002597
15.
Sreenivasan
,
K.
,
1982
, “
Laminarescent, Relaminarizing and Retransitional Flows
,”
Acta Mech.
,
44
, pp.
1
48
.10.1007/BF01190916
16.
Prisco
,
G.
,
Keating
,
A.
,
Piomelli
,
U.
, and
Balaras
,
E.
,
2007
, “
Large-Eddy Simulation of Accelerating Boundary Layers
,”
Prog. Turbul. II
,
109
, pp.
137
143
.10.1007/978-3-540-32603-8
17.
Jones
,
W.
, and
Launder
,
B.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
, pp.
301
314
.10.1016/0017-9310(72)90076-2
18.
Van-Driest
,
E. R.
,
1956
, “
On Turbulent Flow Near a Wall
,”
AIAA J.
,
23
(
11
), pp.
1007
1011
.
19.
Rumsey
,
C. L.
, and
Spalart
,
P. R.
,
2009
, “
Turbulence Model Behavior in Low Reynolds Number Regions of Aerodynamic Flowfields
,”
AIAA J.
,
47
(
4
), pp.
982
993
.10.2514/1.39947
20.
Piomelli
,
U.
,
Balaras
,
E.
, and
Pascarelli
,
A.
,
2000
, “
Turbulent Structures in Accelerating Boundary Layers
,”
J. Turbul.
,
1
.10.1088/1468-5248/1/1/001
21.
Wissink
,
J.
, and
Rodi
,
W.
,
2009
, “
DNS of Heat Transfer in Transitional, Accelerated Boundary Layer Flow Over a Flat Plate Affected by Free-Stream Fluctuations
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
930
938
.10.1016/j.ijheatfluidflow.2009.06.003
22.
Spalart
,
P.
,
1986
, “
Numerical Study of Sink-Flow Boundary Layers
,”
J. Fluid Mech.
,
172
, pp.
307
328
.10.1017/S0022112086001751
23.
Wolfshtein
,
M.
,
1969
, “
The Velocity and Temperature Distribution in One-Dimensional Flow With Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transfer
,
12
(
3
), pp.
301
318
.10.1016/0017-9310(69)90012-X
24.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA 30th Aerospace Sciences Meeting and Exhibit, Reno, NV
, pp.
1
27
, AIAA Paper No. 92-0439.
25.
Mellor
,
G.
, and
Herring
,
H.
,
1968
, “
Two Methods of Calculating Turbulent Boundary Layer Behavior Based on Numerical Solutions of the Equations of Motion
,” Computation of Turbulent Boundary Layers Conference, Stanford, CA, August 18–25, Vol. 1, pp. 331–345.
26.
Launder
,
B.
, and
Sharma
,
B.
,
1974
, “
Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
, pp.
131
137
.10.1016/0094-4548(74)90150-7
27.
Chien
,
K.
,
1982
, “
Predictions of Channel and Boundary-Layer Flows With a Low-Reynolds-Number Turbulence Model
,”
AIAA J.
,
20
(
1
), pp.
33
38
.10.2514/3.51043
28.
Craft
,
T.
,
Iacovides
,
H.
, and
Yoon
,
J.
,
1999
, “
Progress in the Use of Non-Linear Two-Equation Models in the Computation of Convective Heat-Transfer in Impinging and Separated Flows
,”
Flow, Turbul. Combust.
,
63
(
1–4
), pp.
59
80
.10.1023/A:1009973923473
29.
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1993
, “
On Explicit Algebraic Stress Models for Complex Turbulent Flows
,”
J. Fluid Mech.
,
254
, pp.
59
78
.10.1017/S0022112093002034
30.
Tucker
,
P. G.
,
2001
,
Computation of Unsteady Internal Flows
,
Kluwer Academic Publishers
, Norwell, MA.
31.
Launder
,
B.
,
Reece
,
G.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
.10.1017/S0022112075001814
32.
Wilcox
,
D.
,
1998
,
Turbulence Modeling for CFD
,
DCW Industries, Inc.
,
La Canada, CA
.
33.
Menter
,
F.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
You do not currently have access to this content.