The simultaneous effects of flow pulsation and geometrical perturbation on laminar mixing in curved ducts have been numerically studied by three different metrics: analysis of the secondary flow patterns, Lyapunov exponents and vorticity vector analysis. The mixer that creates the flow pulsation and geometrical perturbations in these simulations is a twisted duct consisting of three bends; the angle between the curvature planes of successive bends is 90 deg. Both steady and pulsating flows are considered. In the steady case, analysis of secondary flow patterns showed that homoclinic connections appear and become prominent at large Reynolds numbers. In the pulsatile flow, homoclinic and heteroclinic connections appear by increasing β, the ratio of the peak oscillatory velocity component of the mean flow velocity. Moreover, sharp variations in the secondary flow structure are observed over an oscillation cycle for high values of β. These variations are reduced and the homoclinic connections disappear at high Womersley numbers. We show that small and moderate values of the Womersley number (6 ≤ α ≤ 10) and high values of velocity amplitude ratio (β ≥ 2) provide a better mixing than that in the steady flow. These results correlate closely with those obtained using two other metrics, analysis of the Lyapunov exponents and vorticity vector. It is shown that the increase in the Lyapunov exponents, and thus mixing enhancement, is due to the formation of homoclinic and heteroclinic connections.

References

References
1.
Dean
,
W. R.
,
1927
, “
Note on the Motion of Fluid in a Curved Pipe
,”
Philos. Mag.
,
4
(
20
), pp.
208
223
.10.1080/14786440708564324
2.
Mutabazi
,
I.
,
Normand
,
C.
,
Peerhossaini
,
H.
, and
Wesfreid
,
J. E.
,
1989
, “
Oscillatory Modes Between Two Horizontal Corotating Cylinders With a Partially Filled Gap
,”
Phys. Rev. A
,
39
(
2
), pp.
763
771
.10.1103/PhysRevA.39.763
3.
Le Guer
,
Y.
, and
Peerhossaini
,
H.
,
1991
, “
Order Breaking in Dean Flow
,”
Phys. Fluids
,
3
(
5
), pp.
1029
1032
.10.1063/1.858082
4.
Duchêne
,
C.
,
Peerhossaini
,
H.
, and
Michard
,
P. J.
,
1995
, “
On the Flow Velocity and Tracer Patterns in a Twisted Duct Flow
,”
Phys. Fluids
,
7
(
6
), pp.
1307
1317
.10.1063/1.868759
5.
Lyne
,
W. H.
,
1971
, “
Unsteady Viscous Flow in a Curved Pipe
,”
J. Fluid Mech.
,
45
(
1
), pp.
13
31
.10.1017/S0022112071002970
6.
Zalosh
,
R. G.
, and
Nelson
,
W. G.
,
1973
, “
Pulsating Flow in a Curved Tube
,”
J. Fluid Mech.
,
59
(
4
), pp.
693
705
.10.1017/S0022112073001795
7.
Bertelsen
,
A. F.
,
1975
, “
An Experimental Investigation of Low Reynolds Number Secondary Streaming Effects Associated With an Oscillating Viscous Flow in a Curved Pipe
,”
J. Fluid Mech.
,
70
(
3
), pp.
519
527
.10.1017/S0022112075002169
8.
Sudo
,
K.
,
Sumida
,
M.
, and
Yamane
,
R.
,
1992
, “
Secondary Motion of Fully Developed Oscillatory Flow in a Curved Pipe
,”
J. Fluid Mech.
,
237
, pp.
189
208
.10.1017/S0022112092003380
9.
Timité
,
B.
,
Castelain
,
C.
, and
Peerhossaini
,
H.
,
2010
, “
Pulsatile Viscous Flow in a Curved Pipe: Effects of Pulsation on the Development of Secondary Flow
,”
Int. J. Heat Fluid Flow
,
31
(
5
), pp.
879
896
.10.1016/j.ijheatfluidflow.2010.04.004
10.
Achrya
,
N.
,
Sen
,
M.
, and
Chang
,
H. C.
,
1992
, “
Heat Transfer Enhancement in Coiled Tubes by Chaotic Mixing
,”
Int. J. Heat Mass Transfer
,
35
(
10
), pp.
2475
2489
.10.1016/0017-9310(92)90090-F
11.
Achrya
,
N.
,
Sen
,
M.
, and
Chang
,
H. C.
,
1994
, “
Thermal Entrance Length and Nusselt Numbers in Coiled Tubes
,”
Int. J. Heat Mass Transfer
,
37
(
2
), pp.
336
340
.10.1016/0017-9310(94)90105-8
12.
Peerhossaini
,
H.
,
Castelain
,
C.
, and
Le Guer
,
Y.
,
1993
, “
Heat Exchanger Design Based on Chaotic Advection
,”
Exp. Therm. Fluid Sci.
,
7
(
4
), pp.
333
344
.10.1016/0894-1777(93)90056-O
13.
Mokrani
,
A.
,
Castelain
,
C.
, and
Peerhossaini
,
H.
,
1997
, “
The Effects of Chaotic Advection on Heat Transfer
,”
Int. J. Heat Mass Transfer
,
40
(
13
), pp.
3089
3104
.10.1016/S0017-9310(96)00361-4
14.
Lasbet
,
Y.
,
Auvity
,
B.
,
Castelain
,
C.
, and
Peerhossaini
,
H.
,
2006
, “
A Chaotic Heat Exchanger for PEMFC Cooling Applications
,”
J. Power Sources
,
156
(
1
), pp.
114
118
.10.1016/j.jpowsour.2005.08.030
15.
Lemenand
,
T.
, and
Peerhossaini
,
H.
,
2002
, “
A Thermal Model for Prediction of the Nusselt Number in a Pipe With Chaotic Flow
,”
Appl. Therm. Eng.
,
22
(
15
), pp.
1717
1730
.10.1016/S1359-4311(02)00075-3
16.
Habchi
,
C.
,
Lemenand
,
T.
,
Della Valle
,
D.
, and
Peerhossaini
,
H.
,
2010
, “
Liquid/Liquid Dispersion in a Chaotic Advection Flow
,”
Int. J. Multiphase Flow
,
35
(
6
), pp.
485
497
.10.1016/j.ijmultiphaseflow.2009.02.019
17.
Nguyen
,
N.
,
2008
,
Micromixers: Fundamentals, Design and Fabrication
,
William Andrew
,
New York
, pp.
42
52
.
18.
Siginer
,
D. A.
,
1991
, “
Multiple Integral Constitutive Equations in Unsteady Motions and Rheometry
,”
ASME Appl. Mech. Rev.
,
44
(
11S
), pp.
232
245
.10.1115/1.3121360
19.
Wang
,
G. R.
,
2003
, “
A Rapid Mixing Process in Continuous Operation Under Periodic Forcing
,”
Chem. Eng. Sci.
,
58
(
22
), pp.
4953
4963
.10.1016/j.ces.2003.06.001
20.
Timité
,
B.
,
Jarrahi
,
M.
Castelain
,
C.
and
Peerhossaini
,
H.
,
2009
, “
Pulsating Flow for Mixing Intensification in a Twisted Curved Pipe
,”
ASME J. Fluids Eng.
,
131
(
12
), p.
121104
.10.1115/1.4000556
21.
Jarrahi
,
M.
,
Castelain
,
C.
, and
Peerhossaini
,
H.
,
2011
, “
Secondary Flow Patterns and Mixing in Laminar Pulsating Flow Through a Curved Pipe
,”
Exp. Fluids
,
50
(
6
), pp.
1539
1558
.10.1007/s00348-010-1012-z
22.
Timité
,
B.
,
Castelain
,
C.
, and
Peerhossaini
,
H.
,
2011
, “
Mass Transfer and Mixing by Pulsatile Three-Dimensional Chaotic Flow in Alternating Curved Pipes
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
3933
3950
.10.1016/j.ijheatmasstransfer.2011.04.031
23.
Ansari
,
M. A.
, and
Kim
,
K. Y.
,
2009
, “
Parametric Study on Mixing of Two Fluids in a Three-Dimensional Serpentine Microchannel
,”
Chem. Eng. J.
,
146
(
3
), pp.
439
448
.10.1016/j.cej.2008.10.006
24.
Yamagishi
,
A.
,
Inaba
,
T.
, and
Ymaguchi
,
Y.
,
2007
, “
Chaotic Analysis of Mixing Enhancement in Steady Laminar Flows Through Multiple Pipe Bends
,”
Int. J. Heat Mass Transfer
,
50
(
7–8
), pp.
1237
1248
.10.1016/j.ijheatmasstransfer.2006.09.033
25.
Jones
,
S. W.
,
Thomas
,
O. M.
, and
Aref
,
H.
,
1989
, “
Chaotic Advection by Laminar Flow in a Twisted Pipe
,”
J. Fluid Mech.
,
209
, pp.
335
357
.10.1017/S0022112089003137
26.
Fluent, Inc. Fluent 6.3, 2006, User's Guide.
27.
Strasser
,
W.
,
2006
, “
CFD Investigation of Gear Pump Mixing Using Deforming/Agglomerating Mesh
,”
ASME J. Fluids Eng.
,
129
, pp.
476
484
.10.1115/1.2436577
28.
Jarrahi
,
M.
,
Castelain
,
C.
, and
Peerhossaini
,
H.
,
2011
, “
Laminar Sinusoidal and Pulsatile Flows in a Curved Pipe
,”
J. Appl. Fluid Mech.
,
4
(
2SI
), pp.
21
26
.
29.
Ottino
,
J. M.
,
1989
,
The Kinematic of Mixing
,
Cambridge University Press
,
Cambridge, UK
, Ch. 8.
30.
Mancho
,
A. M.
,
Small
,
D.
, and
Wiggins
,
S.
,
2006
, “
A Tutorial on Dynamical Systems Concepts Applied to Lagrangian Transport in Oceanic Flows Defined as Finite Time Data Sets: Theoretical and Computational Issues
,”
Phys. Rep.
,
437
(
3–4
), pp.
55
124
.10.1016/j.physrep.2006.09.005
31.
Castelain
,
C.
,
Mokrani
,
A.
,
Le Guer
,
Y.
, and
Peerhossaini
,
H.
,
2001
, “
Experimental Study of Chaotic Advection Regime in a Twisted Duct Flow
,”
Eur. J. Mech.
,
20
(
2
), pp.
205
232
.10.1016/S0997-7546(00)01116-X
32.
Mokrani
,
A.
,
Castelain
,
C.
, and
Peerhossaini
,
H.
,
1998
, “
A Quantitative Measure of the Chaotic Behavior in Conservative Systems: A Study of Transport Phenomena in Open Systems
,”
Revue Generale de Thermique
,
37
(
6
), pp.
459
474
.10.1016/S0035-3159(98)80063-9
You do not currently have access to this content.