In the current paper, the three-dimensional air flow evolution around a circular cylinder is studied. The main aim is to control the flow field upstream and downstream of a circular cylinder by means of radial deformation. Within a particular step, one focuses on the response of the topological structures, which is developing in the cylinder near wake to applied pulsatile motion. Furthermore, a special care is considered to the aerodynamics forces behavior in adjusting the applied controlling strategy. The used controlling frequency range extends from f = 1fn = 17 Hz to f = 6fn = 102.21 Hz, which corresponds to a series of multiharmonic frequency varying from one to six times the natural vortex shedding frequency (VSF) in none forced wake. Throughout this work, the forcing amplitude is fixed at 16% of cylinder diameter and the Reynolds number as Re = 550. Through Fluent computational fluid dynamics (CFD) code and Matlab simulations, the obtained results showed a good accordance with the calculated ones.

References

References
1.
Zdravkovich
,
M. M.
,
1977
, “
Review of Flow Interference Between Two Circular Cylinders in Various Arrangements
,”
ASME J. Fluids Eng.
,
99
(
4
), pp.
618
633
.10.1115/1.3448871
2.
Zdravkovich
,
M. M.
,
1997
,
Flow Around Circular Cylinders Volume 1: Fundamentals
,
Oxford University
,
New York
.
3.
Williamson
,
C. H. K.
,
1996
, “
Vortex Dynamics in the Cylinder Wake
,”
Ann. Rev. Fluid Mech
,
28
, pp.
477
539
.10.1146/annurev.fl.28.010196.002401
4.
Sreenivasan
,
K. R.
,
1999
, “
Fluid Turbulence
,”
Rev. Mod. Phys.
,
71
(
2
), pp.
383
395
.10.1103/RevModPhys.71.S383
5.
Williamson
,
C. H. K.
, and
Govardhan
,
R.
,
2004
, “
Vortex-Induced Vibrations
,”
Ann. Rev. Fluid Mech
,
36
, pp.
413
455
.10.1146/annurev.fluid.36.050802.122128
6.
Williamson
,
C. H. K.
,
1996
, “
Three-Dimensional Vortex Dynamics in Bluff Body Wakes
,”
Exp. Therm. Fluid Sci.
,
12
, pp.
150
168
.10.1016/0894-1777(95)00085-2
7.
Blevins
,
R. D.
,
1990
,
Flow Induced Vibrations
,
Von Nostrand Reinhold
,
New York
.
8.
Patnaik
,
B. S. V.
,
Narayana
,
P. A. A.
, and
Seetharamu
,
K. N.
,
1999
, “
Numerical Simulation of Laminar Flow Past a Transversely Vibrating Circular Cylinder
,”
J. Sound Vib
,
228
(
3
), pp.
459
475
.10.1006/jsvi.1998.2418
9.
Roshko
,
A
.,
1993
, “
Perspectives on Bluff Body Aerodynamics
,”
Int. J. Wind Eng. Ind. Aerodyn.
,
49
, pp.
79
100
.10.1016/0167-6105(93)90007-B
10.
Betz
,
A
.,
1961
, “
History of Boundary Layer Control in Germany
,”
Boundary Layer and Flow Control
,
G. V.
Lachmann
, ed.,
Pergamon
,
New York
, pp.
1
20
.
11.
Modi
,
V. J.
,
1997
, “
Moving Surface Boundary-Layer Control
,”
J. Fluids Struct.
,
11
, pp.
627
663
.10.1006/jfls.1997.0098
12.
Kumar
,
S.
,
Cantu
,
C.
, and
Gonzalez
,
B.
,
2011
, “
Flow Past a Rotating Cylinder at Low and High Rotation Rates
,”
ASME J. Fluids Eng.
,
133
(
4
), p.
041201
.10.1115/1.4003984
13.
Mokhtarian
,
F.
, and
Modi
,
V. J.
,
1988
, “
Fluid Dynamics of Airfoils With Moving Surface Boundary-Layer Control
,”
J. Aircr.
,
25
, pp.
163
169
.10.2514/3.45557
14.
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J. A.
,
1990
, “
Controlling Chaos
,”
Phys. Rev. Lett.
,
64
(
11
), pp.
11
96
.
15.
Wei
,
G. W.
,
2001
, “
Synchronization of Single-Side Locally Averaged Adaptive Coupling and Its Application to Shock Capturing
,”
Phys. Rev. Lett.
,
86
(
16
), pp.
3542
3545
.10.1103/PhysRevLett.86.3542
16.
Tang
,
G.
,
Guan
,
S.
, and
Hu
,
G.
,
2005
, “
Controlling Flow Turbulence With Moving Controllers
,”
Eur. Phys. J.,
B48
, pp.
259
264
.10.1140/epjb/e2005-00393-x
17.
Tang
,
G. N.
, and
Hu
,
G.
,
2006
, “
Controlling Flow Turbulence Using Local Pinning Feedback
,”
Chin. Phys. Lett.
,
23
(
6
), pp.
1523
1526
.10.1088/0256-307X/23/6/046
18.
Park
,
D. S.
,
Ladd
,
D. M.
, and
Hendricks
,
E. W.
,
1994
, “
Feedback Control of von Kàrmàn Vortex Shedding Behind a Circular Cylinder at Low Reynolds Numbers
,”
Phys. Fluids
,
6
, pp.
2390
2405
.10.1063/1.868188
19.
Gunzburger
,
M. D.
, and
Lee
,
H. C.
,
1996
, “
Feedback Control of Vortex Shedding
,”
ASME J. Appl. Mech.
,
63
(
3
), pp.
828
835
.10.1115/1.2823369
20.
Min
,
C.
, and
Choi
,
H.
,
1999
, “
Suboptimal Feedback Control of Vortex Shedding at Low Reynolds Numbers
,”
J. Fluid Mech.
,
401
, pp.
123
156
.10.1017/S002211209900659X
21.
Tokumaru
,
P. T.
, and
Dimotakis
,
P. E.
,
1991
, “
Rotary Oscillation Control of a Cylinder Wake
,”
J. Fluid Mech.
,
224
, pp.
77
90
.10.1017/S0022112091001659
22.
Warui
,
H. M.
, and
Fujisawa
,
N.
,
1996
, “
Feedback Control of Vortex Shedding From a Circular Cylinder by Cross-Flow Cylinder Oscillations
,”
Exp. Fluids
,
21
, pp.
49
56
.10.1007/BF00204635
23.
Flowcs Williams
,
J. E.
, and
Zhao
,
B. C.
,
1989
, “
The Active Control of Vortex Shedding
,”
J. Fluids Struct.
,
3
(2), pp.
115
122
.10.1016/S0889-9746(89)90026-1
24.
Fujisawa
,
N.
, and
Takeda
,
G.
,
2003
, “
Flow Control Around a Circular Cylinder by Internal Acoustic Excitation
,”
J. Fluids Struct.
,
17
, pp.
903
913
.10.1016/S0889-9746(03)00043-4
25.
Rowley
,
C. W.
, and
Williams
,
D. R.
,
2006
, “
Dynamics and Control of High-Reynolds Number Flow Over Cavities
,”
Ann. Rev. Fluid Mech.
,
38
, pp.
251
276
.10.1146/annurev.fluid.38.050304.092057
26.
Chen
,
Z.
,
Fan
,
B.
,
Zhou
,
B.
, and
Aubry
,
N.
,
2005
, “
Control of Vortex Shedding Behind a Circular Cylinder Using Electromagnetic Forces
,”
Mod. Phys. Lett. B
,
19
(
28/29
), pp.
1627
1630
.10.1142/S0217984905010074
27.
Posdziech
,
O.
, and
Grundmann
,
R.
,
2001
, “
Electromagnetic Control of Seawater Flow Around Circular Cylinders
,”
Eur. J. Mech. B Fluids
,
20
, pp.
255
274
.10.1016/S0997-7546(00)01111-0
28.
Cattafesta
,
L. N.
,
Garg
,
S.
, and
Shukla
,
D.
,
2001
, “
Development of Piezo-Electric Actuators for Active Flow Control
,”
AIAA J.
,
39
(
8
), pp.
1562
1568
.10.2514/2.1481
29.
Kurimoto
,
N.
,
Suzuki
,
Y.
, and
Kasagi
,
N.
,
2005
, “
Active Control of Lifted Diffusion Flumes With Arrayed Micro Actuators
,”
Exp. Fluids
,
39
, pp.
995
1008
.10.1007/s00348-005-0033-5
30.
Gerhard
,
J.
,
Pastoor
,
M.
,
King
,
R.
,
Noack
,
B. R.
,
Dillmann
,
A.
,
Morzynski
,
M.
, and
Tadmor
,
G.
,
2003
, “
Model-Based Control of Vortex Shedding Using Low-Dimensional Galerkin Models
,”
AIAA
Paper No. 2003-426110.2514/6.2003-4262.
31.
Lumley
,
J.
, and
Blossey
,
P.
,
1998
, “
Control of Turbulence
,”
Ann. Rev. Fluid Mech.
,
30
, pp.
311
327
.10.1146/annurev.fluid.30.1.311
32.
Rosetti
,
G. F.
,
Vaz
,
G.
, and
Fujarra
,
A. L. C.
,
2012
, “
URANS Calculations for Smooth Circular Cylinder Flow in a Wide Range of Reynolds Numbers: Solution Verification and Validation
,”
ASME J. Fluids Eng.
,
134
(
12
), p.
121102
.10.1115/1.4007571
33.
Williamson
,
C. H. K.
,
1989
, “
Oblique and Parallel Modes of Vortex Shedding in the Wake of a Circular Cylinder at Low Reynolds Number
,”
J. Fluid. Mech.
,
206
, pp.
579
627
10.1017/S0022112089002429
34.
Williamson
,
C. H. K.
,
1992
, “
The Natural and Forced Formation of Spot-Like Vortex-Dislocations in the Transition of a Wake
,”
J. Fluid. Mech.
,
243
, pp.
393
441
.10.1017/S0022112092002763
35.
Williamson
,
C. H. K.
,
1996
, “
Mode-A Secondary Instability in Wake Transition
,”
Phys. Fluids
,
8
, pp.
1680
1682
.10.1063/1.868949
36.
Mittal
,
R.
, and
Balachandar
,
S.
,
1995
, “
Generation of Stream-Wise Vertical Structures in Bluff-Body Wakes
,”
Phys. Rev. Lett.
,
75
, pp.
1300
1303
.10.1103/PhysRevLett.75.1300
37.
Saha
,
A. K.
,
Muralidhar
,
K.
, and
Biswas
,
G.
,
2000
, “
Numerical Simulation of Transition and Chaos in Two Dimensional Flow Past a Square Cylinder
,”
ASCE J. Eng. Mech.
,
126
(5), pp.
523
532
.10.1061/(ASCE)0733-9399(2000)126:5(523)
38.
Saha
,
A. K.
,
Muralidhar
,
K.
, and
Biswas
,
G.
,
2000b
, “
Vortex Structures and Kinetic Energy Budget in Two Dimensional Flow Past a Square Cylinder
,”
Comput. Fluids
,
29
, pp.
669
694
.10.1016/S0045-7930(99)00021-3
39.
Robichau
,
J.
,
Balachandar
,
S.
, and
Vanka
,
S. P.
,
1999
, “
Three-Dimensional Floquet Instability of the Wake of Square Cylinder
,”
Phys. Fluids
,
11
, pp.
560
578
.10.1063/1.869930
40.
Sohankar
,
A.
,
Norberg
,
C.
, and
Davidson
,
L.
,
1999
, “
Simulation of Three-Dimensional Flow Around a Square Cylinder at Moderate Reynolds Numbers
,”
Phys. Fluids
,
11
, pp.
288
306
.10.1063/1.869879
41.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
42.
Fluent, 6.2., 2006, “User's Guide,” Fluent Inc.
43.
Ferziger
,
H. J.
, and
Peric
,
M.
,
1999
,
Computational Methods for Fluid Dynamics
,
Springer-Verlag
,
Berlin Heidelberg
.
44.
Engelman
,
M. S.
, and
Jamina
,
M.-A.
,
1990
, “
Transient Flow Past a Circular Cylinder: a Bench Mark Solution
,”
Int. J. Numer. Methods Fluids
,
11
(
7
), pp.
985
1000
.10.1002/fld.1650110706
45.
Kang
,
S.
, Choi, H., Lee, S.,
2005
, “
Laminar Flow Past Rotating Circular Cylinder
,”
Phys. Fluids
,
47
(
5
), pp.
427
447
10.1063/1.870190.
46.
Beher
,
M.
, Liou, J., Shih, R., and Tezduyar, T. E.,
1991
, “
Vorticity-Stream Function Formulation of Unsteady Incompressible Past a Circular Cylinder: Sensitivity of the Computed Flow Field to the Location of the Outflow Boundary
,”
Int. J. Numer. Methods Fluids
,
12
, pp.
323
342
.10.1002/fld.1650120403
47.
Sharman
,
B.
, Lien, F. S., Davidson, L., Norberg, C.,
2005
, “
Numerical Prediction of Low Reynolds Number Flow Over Two Tandem Circular Cylinders
,”
Int. J. Numer. Methods Fluids
,
47
(
5
), pp.
427
447
.10.1002/fld.812
48.
Jordan
,
S. K.
, and
Fromm
,
J. E.
,
1972
, “
Oscillating Drag, Lift, Torque on a Circular Cylinder in a Uniform Flow
,”
Phys Fluids
,
15
(
3
), pp.
371
376
.10.1063/1.1693918
49.
Burbeau
,
A.
, and
Sagaut
,
P.
,
2002
, “
Simulation of a Viscous Compressible Flow Past a Circular Cylinder With Higher Order of Discontinuous Galarkin Methods
,”
Comput. Fluids
,
31
, pp.
867
889
.10.1016/S0045-7930(01)00055-X
50.
Posdziech
,
O.
, and
Grundmann
,
R.
,
2007
, “
A Systematic Approach to the Numerical Calculation of Fundamental Quantities of the Two Dimensional Flow Over a Circular Cylinder
,”
J. Fluids Struct.
,
23
, pp.
479
499
.10.1016/j.jfluidstructs.2006.09.004
51.
Muddada
,
S.
, and
Patnaik
,
B. S. V.
,
2010
, “
An Active Flow Control Strategy for the Suppression of Vortex Structures Behind a Circular Cylinder
,”
Eur. J. Mech. B/Fluids
,
29
, pp.
93
104
.10.1016/j.euromechflu.2009.11.002
52.
Koumotsakos
,
P.
, and
Leonard
,
A.
,
1995
, “
High Resolution Simulations of the Flow Around an Impulsively Started Cylinder Using Vortex Method
,”
J. Fluid Mech.
,
196
, pp.
1
38
.10.1017/S0022112095002059
53.
Oualli
,
H.
, Hanchi, H., Bouabdallah, A., Askovic, R., and Gad-el-Hak. M.,
2005
, “
Drag Reduction in a Radially Pulsating Cylinder at Moderate Reynolds Number
,”
Bull. Am. Phys. Soc.
,
50
(
9
).
54.
Coutenceau
,
M.
, and
Bouard
,
R.
,
1980
, “
The Early Stage of Development of the Wake Behind an Impulsively Started Cylinder for 40 < Re < 104
,”
J. Fluid Mech.
,
101
, pp.
583
607
.10.1017/S0022112080001814
55.
Fournier
,
G.
,
Pellerin
,
S.
, and
Ta Phuoc
,
L.
,
2005
, “
Contrôle par Rotation ou par Aspiration de L’écoulement Autour D'uncylindre Calculé par Simulation des Grandes Échelles
,”
C. R. Mec.
,
333
, pp.
273
278
.10.1016/j.crme.2004.11.001
56.
Muralidharan
,
K.
,
Sridhar
,
M.
, and
Patnaik
,
B. S. V.
,
2013
, “
Numerical Simulation of Vortex Induced Vibrations and Its Control by Suction and Blowing
,”
Appl. Math. Modell.
,
37
, pp.
284
307
.10.1016/j.apm.2012.02.028
57.
Inou
,
O.
,
Yamazaki
,
T.
, and
Bisaka
,
T.
,
1995
, “
Numerical Simulation of Forced Wakes Around a Cylinder
,”
Int. J. Heat Fluid Flow
,
16
, pp.
327
332
.10.1016/0142-727X(95)00054-T
58.
Matsui
,
T.
, and
Okude
,
M.
,
1982
, “
Formation of the Secondary Vortex Street in the Wake of a Circular Cylinder
,”
Proceedings of the IUTAM Symposium on Structures of Compressible Turbulent Shear flow
,
Marseille, France, Springer, Berlin
, pp.
156
164
.
59.
Dong
,
S.
,
Karniadakis
,
G. E.
,
Ekmekci
,
A.
, and
Rockwell
,
D. A.
,
2006
, “
Combined DNS PIV Study of the Turbulent Near Wake
,”
J. Fluids Mech.
,
569
, pp.
185
207
.10.1017/S0022112006002606
60.
Chyu
,
C.
,
Linand
,
J.-C.
,
Sheridan
,
J.
, and
Rockwell
,
D.
,
1995
, “
Kàrmàn Vortex Formation From a Cylinder: Role of Phase-Locked Kelvin Helmholtz Vortices
,”
Phys. Fluids
,
7
(
9
), pp.
228
890
.10.1063/1.868477
61.
Barnes
,
F. H.
, and
Grant
,
I.
,
1983
, “
Vortex Shedding in Unsteady Flow
,”
J. Wind Eng. Ind. Aerodyn.
,
11
, pp.
335
344
.10.1016/0167-6105(83)90111-3
62.
Barbi
,
C.
,
Favier
,
D. P.
,
Maresca
,
C. A.
, and
Telionis
,
P. D.
,
1986
, “
Vortex Shedding and Lock-On of a Circular Cylinder in Oscillatory Flow
,”
J. Fluid Mech.
,
170
, pp.
527
544
.10.1017/S0022112086001003
63.
Armstrong
,
B. J.
,
Barnes
,
F. H.
, and
Grant
,
I.
,
1986
, “
The Effect of a Perturbation on the Flow Over a Bluff Cylinder
,”
Phys. Fluids
,
29
, pp.
2095
2102
.10.1063/1.865596
64.
Konstantinidis
,
E.
,
Balabani
,
S.
, and
Yianneskis
,
M.
,
2003
, “
The Effect of Flow Perturbations on the Near Wake Characteristics of a Circular Cylinder
,”
J. Fluids Struct.
,
18
, pp.
367
386
.10.1016/j.jfluidstructs.2003.07.006
65.
Jaza
,
A.
, and
Podolski
,
M.
,
2004
, “
Turbulence Structure in the Vortex Formation Region Behind a Circular Cylinder in Lock-On Conditions
,”
Eur. J. Mech. B/Fluids
,
23
(
3
), pp.
353
360
.10.1016/j.euromechflu.2003.09.004
You do not currently have access to this content.