Reynolds-Averaged Navier–Stokes (RANS) models remain the most common design tool in a wide variety of fluid mixing applications. This includes variable-density turbulent mixing as occurs in inertial confinement fusion. The present work extends validation of the BHR-2 RANS model for variable-density turbulence to a two-dimensional Rayleigh–Taylor test case, the “tilted-rig.” The combined effects of bulk fluid motion and turbulence model behavior are discussed, and several quantities of interest are shown to demonstrate the capability of a four-equation turbulence model to describe this type of two-dimensional turbulent mixing. More generally, the tilted-rig test problem is shown to be a useful exercise for RANS model validation.

References

References
1.
Lindl
,
J. D.
,
1998
,
Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive
, Vol.
2998
,
Springer
,
New York
.
2.
Gull
,
S.
,
1975
, “
The X-Ray, Optical and Radio Properties of Young Supernova Remnants
,”
Royal Astron. Soc. Month. Not.
,
171
, pp.
263
278
.
3.
Thomson
,
W.
,
1871
, “
Hydrokinetic Solutions and Observations. (Lord Kelvin)
,”
Proc. Royal Soc.
,
7
, p.
63
.
4.
Thomson
,
W.
,
1871
, “
XLVI. Hydrokinetic Solutions and Observations
,”
Lond. Edin. Dublin Phil. Mag. J. Sci.
,
42
(281), pp.
362
377
.
5.
Rayleigh
,
1883
, “
Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density
,”
Proc. London Math. Soc.
,
14
, pp.
170
177
.
6.
Taylor
,
G.
,
1950
, “
The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes. I
,”
Proc. R. Soc. London A Math. Phys. Sci.
,
201
(
1065
), pp.
192
196
.10.1098/rspa.1950.0052
7.
Richtmyer
,
R. D.
,
1960
, “
Taylor Instability in Shock Acceleration of Compressible Fluids
,”
Commun. Pure Appl. Math.
,
13
(
2
), pp.
297
319
.10.1002/cpa.3160130207
8.
Meshkov
,
E.
,
1969
, “
Instability of the Interface of Two Gases Accelerated by a Shock Wave
,”
Sov. Fluid Dyn.
,
4
(
5
), pp.
101
104
.10.1007/BF01015969
9.
Kucherenko
,
Y. A.
,
Balabin
,
S.
,
Cherret
,
R.
, and
Haas
,
J.
,
1997
, “
Experimental Investigation Into Inertial Properties of Rayleigh–Taylor Turbulence
,”
Laser Part. Beams
,
15
, pp.
25
32
.10.1017/S0263034600010715
10.
Dalziel
,
S.
,
Linden
,
P.
, and
Youngs
,
D.
,
1999
, “
Self-Similarity and Internal Structure of Turbulence Induced by Rayleigh–Taylor Instability
,”
J. Fluid Mech.
,
399
, pp.
1
48
.10.1017/S002211209900614X
11.
Smeeton
,
V. S.
, and
Youngs
,
D. L.
,
1987
, “
Experimental Investigation of Turbulent Mixing by Rayleigh–Taylor Instability. Part 3.
,” AWE Report, No. O 35/87.
12.
Dimonte
,
G.
, and
Schneider
,
M.
,
2000
, “
Density Ratio Dependence of Rayleigh–Taylor Mixing for Sustained and Impulsive Acceleration Histories
,”
Phys. Fluids
,
12
, pp.
304
321
.10.1063/1.870309
13.
Olson
,
D.
, and
Jacobs
,
J.
,
2009
, “
Experimental Study of Rayleigh–Taylor Instability With a Complex Initial Perturbation
,”
Phys. Fluids
,
21
(3), p.
034103
.10.1063/1.3085811
14.
Banerjee
,
A.
,
Kraft
,
W. N.
, and
Andrews
,
M. J.
,
2010
, “
Detailed Measurements of a Statistically Steady Rayleigh–Taylor Mixing Layer From Small to High Atwood Numbers
,”
J. Fluid Mech.
,
659
(
1
), pp.
127
190
.10.1017/S0022112010002351
15.
Youngs
,
D. L.
,
1991
, “
Three-Dimensional Numerical Simulation of Turbulent Mixing by Rayleigh–Taylor Instability
,”
Phys. Fluids A: Fluid Dynamics
,
3
, pp.
1312
1320
.10.1063/1.858059
16.
Youngs
,
D. L.
,
1994
, “
Numerical Simulation of Mixing by Rayleigh–Taylor and Richtmyer–Meshkov Instabilities
,”
Laser Part. Beams
,
12
(
4
), pp.
725
750
.10.1017/S0263034600008557
17.
Dimonte
,
G.
,
Youngs
,
D.
,
Dimits
,
A.
,
Weber
,
S.
,
Marinak
,
M.
,
Wunsch
,
S.
,
Garasi
,
C.
,
Robinson
,
A.
,
Andrews
,
M.
,
Ramaprabhu
,
P.
,
Calder
,
A. C.
,
Fryxell
,
B.
,
Biello
,
J.
,
Dursi
,
L.
,
MacNiece
,
P.
,
Olson
,
K.
,
Ricker
,
P.
,
Rosner
,
R.
,
Timmes
,
F.
,
Tufo
,
H.
,
Young
,
Y.-N.
, and
Zingale
,
M.
,
2004
, “
A Comparative Study of the Turbulent Rayleigh–Taylor Instability Using High-Resolution Three-Dimensional Numerical Simulations: The Alpha-Group Collaboration
,”
Phys. Fluids
,
16
, pp.
1668
1693
.10.1063/1.1688328
18.
Cook
,
A. W.
,
Cabot
,
W.
, and
Miller
,
P. L.
,
2004
, “
The Mixing Transition in Rayleigh–Taylor Instability
,”
J. Fluid Mech.
,
511
(
1
), pp.
333
362
.10.1017/S0022112004009681
19.
Youngs
,
D. L.
,
2009
, “
Application of Monotone Integrated Large Eddy Simulation to Rayleigh–Taylor Mixing
,”
Phil. Trans. R. Soc. A Math. Phys. Eng. Sci.
,
367
(
1899
), pp.
2971
2983
.10.1098/rsta.2008.0303
20.
Mueschke
,
N. J.
, and
Schilling
,
O.
,
2009
, “
Investigation of Rayleigh–Taylor Turbulence and Mixing Using Direct Numerical Simulation With Experimentally Measured Initial Conditions. I. Comparison to Experimental Data
,”
Phys. Fluids
,
21
(1), p.
014106
.10.1063/1.3064120
21.
Livescu
,
D.
, and
Ristorcelli
,
J.
,
2008
, “
Variable-Density Mixing in Buoyancy-Driven Turbulence
,”
J. Fluid Mech.
,
605
(
1
), pp.
145
180
.10.1017/S0022112008001481
22.
Livescu
,
D.
, and
Ristorcelli
,
J.
,
2007
, “
Buoyancy-Driven Variable-Density Turbulence
,”
J. Fluid Mech.
,
591
, pp.
43
72
.10.1017/S0022112007008270
23.
Livescu
,
D.
,
Ristorcelli
,
J.
,
Gore
,
R.
,
Dean
,
S.
,
Cabot
,
W.
, and
Cook
,
A.
,
2009
, “
High-Reynolds Number Rayleigh–Taylor Turbulence
,”
J. Turb.
,
10
, p.
N13
.10.1080/14685240902870448
24.
Andronov
,
V. A.
,
Bakhrakh
,
S. M.
,
Meshkov
,
E. E.
,
Mokhov
,
V. N.
,
Nikiforov
,
V. V.
,
Pevnitskii
,
A. V.
, and
Tolshmyakhov
,
A. I.
,
1976
, “
Turbulent Mixing at Contact Surface Accelerated by Shock Waves
,”
Sov. Phys. JETP
,
44
, pp.
424
427
.
25.
Gauthier
,
S.
, and
Bonnet
,
M.
,
1990
, “
A k-ε Model for Turbulent Mixing in Shock-Tube Flows Induced by Rayleigh–Taylor Instability
,”
Phys. Fluids A: Fluid Dyn.
,
2
, p.
1685
.10.1063/1.857576
26.
Dimonte
,
G.
, and
Tipton
,
R.
,
2006
, “
Kl Turbulence Model for the Self-Similar Growth of the Rayleigh–Taylor and Richtmyer–Meshkov Instabilities
,”
Phys. Fluids
,
18
(
8
), p.
085101
.10.1063/1.2219768
27.
Chiravalle
,
V. P.
,
2006
, “
The k-l Turbulence Model for Describing Buoyancy-Driven Fluid Instabilities
,”
Laser Part. Beams
,
24
(
3
), pp.
381
394
.10.1017/S026303460606054X
28.
Grégoire
,
O.
,
Souffland
,
D.
, and
Gauthier
,
S.
,
2005
, “
A Second-Order Turbulence Model for Gaseous Mixtures Induced by Richtmyer–Meshkov Instability
,”
J. Turb.
,
6
, p.
N29
.10.1080/14685240500307413
29.
Cranfill
,
C. W.
,
1992
, “
A New Multifluid Turbulent-Mix Model
,” Los Alamos National Laboratory, Report No. LA-UR–92-2484.
30.
Scannapieco
,
A. J.
, and
Cheng
,
B.
,
2002
, “
A Multifluid Interpenetration Mix Model
,”
Phys. Lett. A
,
299
, pp.
49
64
.10.1016/S0375-9601(02)00651-5
31.
Llor
,
A.
,
2003
, “
Bulk Turbulent Transport and Structure in Rayleigh–Taylor, Richtmyer–Meshkov, and Variable Acceleration Instabilities
,”
Laser Part. Beams
,
21
(
3
), pp.
305
310
.10.1017/s0263034603213021
32.
Besnard
,
D.
,
Harlow
,
F. H.
,
Rauenzahn
,
R. M.
, and
Zemach
,
C.
,
1992
, “
Turbulence Transport Equations for Variable-Density Turbulence and Their Relationship to Two-Field Models
,” Los Alamos National Laboratory, Report No. LA-12303-MS.
33.
Banerjee
,
A.
,
Gore
,
R. A.
, and
Andrews
,
M. J.
,
2010
, “
Development and Validation of a Turbulent-Mix Model for Variable-Density and Compressible Flows
,”
Phys. Rev. E
,
82
(
4
), p.
046309
.10.1103/PhysRevE.82.046309
34.
Schwarzkopf
,
J. D.
,
Livescu
,
D.
,
Gore
,
R. A.
,
Rauenzahn
,
R. M.
, and
Ristorcelli
,
J. R.
,
2011
, “
Application of a Second-Moment Closure Model to Mixing Processes Involving Multicomponent Miscible Fluids
,”
J. Turb.
, (
12
).
35.
Stalsberg-Zarling
,
K.
, and
Gore
,
R. A.
,
2011
, “
The BHR2 Turbulence Model: Incompressible isotropic Decay, Rayleigh–Taylor, Kelvin– Helmholtz and Homogeneous Variable Density Turbulence
,” Los Alamos National Laboratory, Report No. LA-UR–11-04773.
36.
Haines
,
B. M.
,
Grinstein
,
F. F.
, and
Schwarzkopf
,
J. D.
,
2013
, “
Reynolds-Averaged Navier–Stokes Initialization and Benchmarking in Shock-Driven Turbulent Mixing
,”
J. Turb.
,
14
(
2
), pp.
46
70
.10.1080/14685248.2013.779380
37.
Waltz
,
J.
, and
Gianakon
,
T.
,
2012
, “
A Comparison of Mix Models for the Rayleigh–Taylor Instability
,”
Comput. Phys. Commun.
,
183
(
1
), pp.
70
79
.10.1016/j.cpc.2011.08.018
38.
Denissen
,
N.
,
Fung
,
J.
,
Reisner
,
J.
, and
Andrews
,
M.
,
2012
, “
Implementation and Validation of the BHR Turbulence Model in the Flag Hydrocode
,” Los Alamos National Laboratory, Report No. LA-UR–12-24386.
39.
Ptitzyna
,
N.
,
Kucherenko
,
Y.
,
Chitaikin
,
V.
, and
Pylaev
,
A.
,
1993
, “
Experimental Study Into the Stabilization Effect in Gravitational Turbulent Mixing Development on an Inclined Boundary
,”
4th International Workshop on the Physics of Compressible Turbulent Mixing
.
40.
Andrews
,
M.
,
1986
, “
Turbulent Mixing by Rayleigh–Taylor Instability
,” Ph.D. thesis, Imperial College London, London, UK.
41.
Andrews
,
M. J.
, and
Spalding
,
D. B.
,
1990
, “
A Simple Experiment to Investigate Two-Dimensional Mixing by Rayleigh–Taylor Instability
,”
Phys. Fluids A Fluid Dyn.
,
2
, pp.
922
927
.10.1063/1.857652
42.
Andrews
,
M.
,
1995
, “
Accurate Computation of Convective Transport in Transient Two-Phase Flow
,”
Int. J. Num. Meth. Fluids
,
21
(
3
), pp.
205
222
.10.1002/fld.1650210303
43.
Rollin
,
B.
, and
Andrews
,
M.
,
2012
,
ASME
Paper No. FEDSM2012-72320. 10.1115/FEDSM2012-72320
44.
Holford
,
J. M.
,
Dalziel
,
S. B.
, and
Youngs
,
D.
,
2003
, “
Rayleigh–Taylor Instability at a Tilted Interface in Laboratory Experiments and Numerical Simulations
,”
Laser Part. Beams
,
21
(
3
), pp.
419
423
.10.1017/S0263034603213203
45.
Wei
,
T.
, and
Livescu
,
D.
,
2012
, “
Direct Numerical Simulation of Tilted Rayleigh–Taylor Instability
,”
International Conference on Numerical Methods in Multiphase Flow
, University Park, PA.
46.
Smalyuk
,
V.
,
Tipton
,
R.
,
Pino
,
J.
,
Casey
,
D.
,
Grim
,
G.
,
Remington
,
B.
,
Rowley
,
D.
,
Weber
,
S.
,
Barrios
,
M.
,
Benedetti
,
L.
,
Bleuel
,
D. L.
,
Bradley
,
D. K.
,
Caggiano
,
J. A.
,
Callahan
,
D. A.
,
Cerjan
,
C. J.
,
Clark
,
D. S.
,
Edgell
,
D. H.
,
Edwards
,
M. J.
,
Frenje
,
J. A.
,
Gatu-Johnson
,
M.
,
Glebov
,
V. Y.
,
Glenn
,
S.
,
Haan
,
S. W.
,
Hamza
,
A.
,
Hatarik
,
R.
,
Hsing
,
W. W.
,
Izumi
,
N.
,
Khan
,
S.
,
Kilkenny
,
J. D.
,
Kline
,
J.
,
Knauer
,
J.
,
Landen
,
O. L.
,
Ma
,
T.
,
McNaney
,
J. M.
,
Mintz
,
M.
,
Moore
,
A.
,
Nikroo
,
A.
,
Pak
,
A.
,
Parham
,
T.
,
Petrasso
,
R.
,
Sayre
,
D. B.
,
Schneider
,
M. B.
,
Tommasini
,
R.
,
Town
,
R. P.
,
Widmann
,
K.
,
Wilson
,
D. C.
, and
Yeamans
,
C. B.
,
2014
, “
Measurements of an Ablator-Gas Atomic Mix in Indirectly Driven Implosions at the National Ignition Facility
,”
Phys. Rev. Lett.
,
112
(
2
), p.
025002
.10.1103/PhysRevLett.112.025002
47.
Burton
,
D. E.
,
1992
, “
Connectivity Structures and Differencing Techniques for Staggered-Grid Free-Lagrange Hydrodynamics
,” Lawrence Livermore National Laboratory, Report No. UCRL–JC–110555.
48.
Burton
,
D. E.
,
1994
, “
Consistent Finite-Volume Discretization of Hydrodynamic Conservation Laws for Unstructured Grids
,” Lawrence Livermore National Laboratory, Report No. UCRL–JC–118788.
49.
Caramana
,
E.
,
Burton
,
D.
,
Shashkov
,
M.
, and
Whalen
,
P.
,
1998
, “
The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy
,”
J. Comput. Phys.
,
146
(
1
), pp.
227
262
.10.1006/jcph.1998.6029
50.
Waltz
,
J.
,
2009
, “
ALE Applications With FLAG
,” Numerical Methods for Multi-Material Fluids and Structures. Pavia, Italy.
51.
Andrews
,
M.
,
Youngs
,
D.
, and
Livescu
,
D.
,
2012
, “
Test Problem: Tilted Rayleigh–Taylor for 2-D Mixing Studies for a Tilted-Rig
,” Los Alamos National Laboratory Report, No. LA-UR–12-24091.
52.
Andrews
,
M.
,
Youngs
,
D.
,
Livescu
,
D.
, and
Wei
,
T.
,
2014
, “
Computational Studies of Two-Dimensional Rayleigh–Taylor Driven Mixing for a Tilted-Rig
,”
ASME J. Fluids Eng.
, (accepted).10.1115/1.4027587
53.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
.
54.
Linden
,
P.
,
Redondo
,
J.
, and
Youngs
,
D.
,
1994
, “
Molecular Mixing in Rayleigh–Taylor Instability
,”
J. Fluid Mech.
,
265
(
1
), pp.
97
124
.10.1017/S0022112094000777
55.
Dimonte
,
G.
,
Ramaprabhu
,
P.
,
Youngs
,
D.
,
Andrews
,
M.
, and
Rosner
,
R.
,
2005
, “
Recent Advances in the Turbulent Rayleigh–Taylor Instability
,”
Phys. Plasmas
,
12
, p.
056301
.10.1063/1.1871952
56.
Glimm
,
J.
,
Grove
,
J. W.
,
Li
,
X. L.
,
Oh
,
W.
, and
Sharps
,
D. H.
,
2001
, “
A Critical Analysis of Rayleigh–Taylor Growth Rates
,”
J. Comput. Phys.
,
169
(
2
), pp.
652
677
.10.1006/jcph.2000.6590
57.
Rollin
,
B.
, and
Andrews
,
M.
,
2013
, “
On Generating Initial Conditions for Turbulence Models: The Case of Rayleigh–Taylor Instability Turbulent Mixing
,”
J. Turb.
,
14
(
3
), pp.
77
106
.10.1080/14685248.2013.790549
58.
Read
,
K.
,
1984
, “
Experimental Investigation of Turbulent Mixing by Rayleigh-Taylor Instability
,”
Physica D Nonlin. Phenom.
,
12
(
1
), pp.
45
58
.10.1016/0167-2789(84)90513-X
59.
Roache
,
P. J.
,
1998
, “
Verification and Validation in Computational Science and Engineering, Hermosa
,” Albuquerque, NM.
60.
Burrows
,
K. D.
,
Smeeton
,
V. S.
, and
Youngs
,
D. L.
,
1984
, “
Experimental Investigation of Turbulent Mixing by Rayleigh–Taylor Instability. Part 2.
,” AWE Report No. O 22/84.
61.
Berndt
,
M.
,
Kucharik
,
M.
, and
Shashkov
,
M. J.
,
2010
, “
Using the Feasible Set Method for Rezoning in ALE
,”
Proc. Comput. Sci.
,
1
(
1
), pp.
1885
1892
.10.1016/j.procs.2010.04.211
You do not currently have access to this content.