Liquid-liquid extraction is one of the most important unit operations with a broad field of applications. During the past few years, research activities have been increasing in the area of microextraction due to the evident advantages of microchannel equipment. While there is a sweeping number of publications on the topic of the procedure of microextraction using cocurrent flow, there are still some difficulties in accomplishing multistage processes as the countercurrent extraction, such as mixer-settler arrangements. This is due to the fact that it is difficult to achieve a continuous stable phase separation with high throughput. Additionally, it is also challenging to balance the pressure loss with micropumps after every stage. Both of these processes are essential for the countercurrent extraction and, therefore, at the current state of affairs, they pose a bottleneck. This field of research bears a high development potential in order to improve these processes using microchannel equipment and to realize a multistage countercurrent extraction with high effectiveness. In this paper, different phase separation devices and their particular separation principles are presented whereas the focus lies on the continuous separation. Additionally, some experimental as well as theoretical concepts for the conduct of a multistage countercurrent extraction are outlined.

References

References
1.
Schlünder
,
E.-H.
, and
Thurner
,
F.
,
1986
,
Destillation, Absorption, Extraktion
,
Georg Thieme Verlag, Stuttgart
,
Germany
, Chap. 3.
2.
Li
,
S.
,
Jing
,
S.
,
Luo
,
Q.
,
Chen
,
J.
, and
Luo
,
G.
,
2012
, “
Bionic System for Countercurrent Multi-Stage Micro-Extraction
,”
RSC Adv.
,
2
, pp.
10,817
10,820
.10.1039/c2ra21818f
3.
Chasanis
,
P.
,
Kern
,
J.
,
Grünewald
,
M.
, and
Kenig
,
E. Y.
,
2010
, “
Mikrotrenntechnik: Entwicklungsstand und Perspektiven
,”
Chem. Ing. Techn.
,
82
(
3
), pp.
215
228
.10.1002/cite.200900154
4.
Wojik
,
A.
, and
Marr
,
A.
,
2005
, “
Mikroverfahrenstechnische Prinzipien in der Flüssig/Flüssig-Extraktion
,”
Chem. Ing. Techn.
,
77
(
6
), pp.
653
668
.10.1002/cite.200407102
5.
Aota
,
A.
,
Nonaka
,
M.
,
Hibara
,
A.
, and
Kitamori
,
T.
,
2007
, “
Countercurrent Laminar Microflow for Highly Efficient Solvent Extraction
,”
Angew. Chem.
,
46
, pp.
878
880
.10.1002/anie.200600122
6.
TeGrotenhius
,
W. E.
,
Cameron
,
R. J.
,
Butcher
,
M. G.
,
Martin
,
P. M.
, and
Wegeng
,
R. S.
,
1999
, “
Microchannel Devices for Efficient Contacting of Liquids in Solvent Extraction
,”
Sep. Sci. Technol.
,
34
, pp.
951
974
.10.1080/01496399908951075
7.
Xu
,
J. H.
,
Tan
,
J.
,
Li
,
S. W.
, and
Luo
,
G. S.
,
2008
, “
Enhancement of Mass Transfer Performance of Liquid-Liquid System by Droplet Flow in Microchannels
,”
Chem. Eng. J.
,
141
, pp.
242
249
.10.1016/j.cej.2007.12.030
8.
Assmann
,
N.
,
Ładosz
,
A.
, and
Rudolf von Rohr
,
P.
,
2013
, “
Continuous Micro Liquid-Liquid Extraction
,”
Chem. Eng. Technol.
,
36
(
6
), pp.
921
936
.10.1002/ceat.201200557
9.
Okubo
,
Y.
,
Toma
,
M.
,
Ueda
,
H.
,
Maki
,
T.
, and
Mae
,
K.
,
2004
, “
Microchannel Devices for the Coalescence of Dispersed Droplets Produced for use in Rapid Extraction Processes
,”
Chem. Eng. J.
,
101
, pp.
39
48
.10.1016/j.cej.2003.10.025
10.
Yang
,
L.
,
Zhao
,
Y.
,
Su
,
Y.
, and
Chen
,
G.
,
2013
, “
An Experimental Study of Copper Extraction in a T-Junction Microchannel
,”
Chem. Eng. Technol.
,
36
(
6
), pp.
985
992
.10.1002/ceat.201200464
11.
Hotokezaka
,
H.
,
Tokeshi
,
M.
,
Harada
,
M.
,
Kitamori
,
T.
, and
Ikeda
,
Y.
,
2004
, “
Development of the Innovative Nuclide Separation System for High-Level Radioactive Waste Using Microchannel Chip—Extraction Behaviour of Metal Ions From Aqueous Phase to Organic Phase in Microchannel
,”
Proceedings of the 1st COE-INES International Symposium, Research Laboratory for Nuclear Reactors Tokyo Institute of Technology
,
Tokyo
.
12.
Kim
,
H.-B.
,
Ueno
,
K.
,
Chiba
,
M.
,
Gogi
,
O.
, and
Kitamura
,
N.
,
2000
, “
Spatially-Resolved Fluorescence Spectroscopic Study on Liquid-Liquid Extraction Process in Polymer Michrochannels
,”
Anal. Sci.
,
16
, pp.
871
876
.10.2116/analsci.16.871
13.
Žnidaršič-Plazl
,
P.
, and
Plazl
,
I.
,
2007
, “
Steroid Extraction in a Microchannel System—Mathematical Modelling and Experiments
,”
Lab Chip
,
7
, pp.
883
889
.10.1039/b704432a
14.
Fries
,
D. M.
,
Voitl
,
T.
, and
Rudolf von Rohr
,
P.
,
2008
, “
Liquid Extraction of Vanillin in Rectangular Microreactors
,”
Chem. Eng. Technol.
,
31
(
8
), pp.
1182
1187
.10.1002/ceat.200800169
15.
Tokeshi
,
M.
,
Minagawa
,
T.
, and
Kitamori
,
T.
,
2000
, “
Integration of a Microextraction System. Solvent Extraction of a Co–2-Nitroso-5-Dimethylaminophenol Complex on a Microchip
,”
J. Chromat. A
,
894
, pp.
19
23
.10.1016/S0021-9673(00)00683-X
16.
Hisamoto
,
H.
,
Horiuchi
,
T.
,
Tokeshi
,
M.
,
Hibara
,
A.
, and
Kitamori
,
T.
,
2001
, “
On-Chip Integration of Neutral Ionophore-Based Ion Pair Extraction Reaction
,”
Anal. Chem.
,
73
(
6
), pp.
1382
1386
.10.1021/ac001271v
17.
Wu
,
Y.
,
Li
,
W.
,
Gao
,
H.
,
Li
,
Q.
,
Li
,
Y.
,
Wang
,
K.
,
Mahmood
,
I.
, and
Liu
,
H.
,
2010
, “
A Novel Continuous Re-Extraction Procedure of Penicillin G by a Micro-Extractor Based on Ceramic Membrane
,”
J. Membrane Sci.
,
347
, pp.
17
25
.10.1016/j.memsci.2009.10.001
18.
Hellé
,
G.
,
Mariet
,
C.
, and
Cote
,
G.
,
2012
, “
Microfluidic Tools for the Liquid-Liquid Extraction of Radionuclides in Analytical Procedures
,”
Procedia Chem.
,
7
, pp.
679
684
.10.1016/j.proche.2012.10.103
19.
Günther
,
A.
, and
Jensen
,
K. F.
,
2006
, “
Multiphase Microfluidics: From Flow Characteristics to Chemical and Material Synthesis
,”
Lab Chip
,
6
, pp.
1487
1503
.10.1039/b609851g
20.
Holbach
,
A.
, and
Kockmann
,
N.
,
2013
, “
Counter-Current Arrangement of Microfluidic Liquid-Liquid Droplet Flow Contactors
,”
Green Proc. Synth.
,
2
, pp.
157
167
.10.1515/gps-2013-0006
21.
Cai
,
Z.-X.
,
Fang
,
Q.
,
Chen
,
H.-W.
, and
Fang
,
Z.-W.
,
2006
, “
A Microfluidic Chip Based Liquid-Liquid Extraction System With Microporous Membrane
,”
Anal. Chim. Acta
,
556
, pp.
151
156
.10.1016/j.aca.2005.06.028
22.
Hessel
,
V.
,
Renken
,
A.
,
Schouten
,
J. C.
, and
Yoshida
,
J.-I.
, eds.,
2009
,
Micro Process Engineering. A Comprehensive Handbook. Volume 1: Fundamentals, Operations and Catalysts
,
Wiley
,
New York
, Chap. 1.
23.
Gaakeer
,
W. A.
,
de Croon
,
M. H. J. M.
,
van der Schaaf
,
J.
, and
Schouten
,
J. C.
,
2012
, “
Liquid-Liquid Slug Flow Separation in a Slit Shaped Micro Device
,”
Chem. Eng. J.
,
207–208
, pp.
440
444
.10.1016/j.cej.2012.06.148
24.
Kralj
,
J. G.
,
Sahoo
,
H. R.
, and
Jensen
,
K. F.
,
2006
, “
Integrated Continuous Microfluidic Liquid-Liquid Extraction
,”
Lab Chip
,
7
, pp.
256
263
.10.1039/b610888a
25.
Kashid
,
M. N.
,
Harshe
,
Y. M.
, and
Agar
,
D. W.
,
2007
, “
Liquid–Liquid Slug Flow in a Capillary: An Alternative to Suspended Drop or Film Contactors
,”
Ind. Eng. Chem. Res.
,
46
, pp.
8420
8430
.10.1021/ie070077x
26.
Lavie
,
R.
,
2008
, “
Thin Layer Extraction—A novel Liquid-Liquid Extraction Method
,”
AIChE J.
,
54
(
4
), pp.
957
964
.10.1002/aic.11445
27.
Kockmann
,
N.
,
2006
, “
Process Engineering Methods and Microsystem Technology
,”
Micro Process Engineering. Fundamentals, Devices, Fabrication, and Applications. Volume 5: Advanced Micro & Nanosystems
,
N.
Kockmann
, ed.,
Wiley
,
New York
, Chap. 1.
You do not currently have access to this content.