This paper presents a hybrid compressible–incompressible approach for simulating the Richtmyer–Meshkov instability (RMI) and associated mixing. The proposed numerical approach aims to circumvent the numerical deficiencies of compressible methods at low Mach (LM) numbers, when the flow has become essentially incompressible. A compressible flow solver is used at the initial stage of the interaction of the shock wave with the fluids interface and the development of the RMI. When the flow becomes sufficiently incompressible, based on a Mach number prescribed threshold, the simulation is carried out using an incompressible flow solver. Both the compressible and incompressible solvers use Godunov-type methods and high-resolution numerical reconstruction schemes for computing the fluxes at the cell interfaces. The accuracy of the model is assessed by using results for a two-dimensional (2D) single-mode RMI.

References

References
1.
Volpe
,
G.
,
1993
, “
Performances of Compressible Flow Codes at Low Mach Number
,”
AIAA J.
,
31
, pp.
49
56
.10.2514/3.11317
2.
Turkel
,
E.
,
Fiterman
,
A.
, and
Van Leer
,
B.
,
1994
,
Preconditioning and the Limit of the Compressible to the Incompressible Flow Equations for Finite Differences Schemes
,
John Wiley and Sons
,
New York
.
3.
Guillard
,
H.
, and
Murrone
,
A.
,
2004
, “
On the Behavior of Upwind Schemes in the Low Mach Number Limit: II. Godunov Type Schemes
,”
Comput. Fluids
,
33
, pp.
655
675
.10.1016/j.compfluid.2003.07.001
4.
Guillard
,
H.
, and
Viozat
,
C.
,
1999
, “
On the Behaviour of Upwind Schemes in the Low Mach Number Limit
,”
Comput. Fluids
,
28
, pp.
63
86
.10.1016/S0045-7930(98)00017-6
5.
Thornber
,
B.
,
Drikakis
,
D.
,
Williams
,
R.
, and
Youngs
,
D.
,
2008
, “
On Entropy Generation and Dissipation of Kinetic Energy in High-Resolution Shock-Capturing Schemes
,”
J. Comput. Phys.
,
227
, pp.
4853
4872
.10.1016/j.jcp.2008.01.035
6.
Thornber
,
B.
,
Mosedale
,
A.
,
Drikakis
,
D.
,
Youngs
,
D.
, and
Williams
,
R.
,
2008
, “
An Improved Reconstruction Method for Compressible Flow With Low Mach Number Features
,”
J. Comput. Phys.
,
227
, pp.
4873
4894
.10.1016/j.jcp.2008.01.036
7.
Drikakis
,
D.
, and
Rider
,
W.
,
2004
,
High Resolution Methods for Incompressible and Low-Speed Flows
,
Springer
,
Berlin
, Germany.
8.
Schnochet
,
S.
,
1994
, “
Fast Singular Limits of Hyperbolic PDEs
,”
J. Differential Eq.
,
114
, pp.
476
512
.10.1006/jdeq.1994.1157
9.
Grenier
,
E.
,
1997
, “
Oscillatory Perturbations of the Navier-Stoke Equations
,”
J. Math. Pures Appl.
,
76
, pp.
477
498
.10.1016/S0021-7824(97)89959-X
10.
Sesterhenn
,
J.
,
Müller
,
B.
, and
Thomann
,
H.
,
1999
, “
On the Cancellation Problem in Calculating Compressible Low Mach Number Flows
,”
J. Comput. Phys.
,
151
, pp.
597
615
.10.1006/jcph.1999.6211
11.
Klein
,
R.
,
1995
, “
Semi-Implicit Extension of a Godunov-Type Scheme Based on Low Mach Number Asymptotics I: One-Dimensional Flow
,”
J. Comput. Phys.
,
121
, pp.
213
237
.10.1016/S0021-9991(95)90034-9
12.
Roller
,
S.
, and
Munz
,
C.
,
2000
, “
A Low Mach Number Scheme Based on Multi-scale Asymptotics
,”
Comput. Visual. Sci.
,
3
, pp.
85
91
.10.1007/s007910050055
13.
Schneider
,
T.
,
Botta
,
N.
,
Geratz
,
K.
, and
Klein
,
R.
,
1999
, “
Extension of Finite Volume Compressible Flow Solvers to Multi-Dimensional, Variable Density Zero Mach Number Flows
,”
J. Comput. Phys.
,
155
, pp.
248
286
.10.1006/jcph.1999.6327
14.
Thornber
,
B.
, and
Drikakis
,
D.
,
2008
, “
Numerical Dissipation of Upwind Schemes in Low Mach Flow
,”
Int. J. Numer. Methods Fluids
,
56
, pp.
1535
1541
.10.1002/fld.1628
15.
Eberle
,
A.
,
1987
, “
Characteristic Flux Averaging Approach to the Solution of Euler's Equations
,” Tech. Rep. Lecture Series 1987-04, Von Karman Institute for Fluid Dynamics.
16.
Drikakis
,
D.
, and
Tsangaris
,
S.
,
1991
, “
An Implicit Characteristic Flux Averaging Scheme for the Euler Equations for Real Gases
,”
Int. J. Numer. Methods Fluids
,
12
, pp.
711
726
.10.1002/fld.1650120803
17.
Zoltak
,
J.
, and
Drikakis
,
D.
,
1998
, “
Hybrid Upwind Methods for the Simulation of Unsteady Shock-Wave Diffraction Over a Cylinder
,”
Comput. Methods Appl. Mech. Eng.
,
162
, pp.
165
185
.10.1016/S0045-7825(97)00342-3
18.
Kim
,
K. H.
, and
Kim
,
C.
,
2005
, “
Accurate, Efficient and Monotonic Numerical Methods for Multi-Dimensional Compressible Flows Part II: Multi-Dimensional Limiting Process
,”
J. Comput. Phys.
,
208
, pp.
570
615
.10.1016/j.jcp.2005.02.022
19.
Rusanov
,
V. V.
,
1961
, “
Calculation of Interaction of Non-Steady Shock Waves With Obstacles
,”
USSR Comput. Math. & Math. Phys.
,
1
, pp.
267
279
.
20.
Chorin
,
A.
,
1968
, “
Numerical Solution of the Navier-Stokes Equations for an Incompressible Fluid
,”
Math. Comput.
,
22
, pp.
745
762
.10.1090/S0025-5718-1968-0242392-2
21.
Chorin
,
A. J.
,
1969
, “
On the Convergence of Discrete Approximations to the Navier-Stokes Equations
,”
Math. Comput.
,
23
, pp.
341
353
.10.1090/S0025-5718-1969-0242393-5
22.
Chorin
,
A. J.
, and
Marsden
,
G.
,
1993
,
A Mathematical Introduction to Fluid-Mechanics
,
Springer
,
New York
.
23.
Van der Vorst
,
H.
,
1992
, “
Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems
,”
SIAM J. Sci. Comput.
,
13
(
2
), pp.
631
644
.10.1137/0913035
24.
Li
,
X. L.
, and
Zhang
,
Q.
,
1997
, “
A Comparative Numerical Study of the Richtmyer-Meshkov Instability With Nonlinear Analysis in Two and Three Dimensions
,”
Phys. Fluids
,
9
(
10
), pp.
3069
3077
.10.1063/1.869415
25.
Melnikov
,
R.
,
1995
, “
Numerical Anomalies Mimicking Physical Effects
,” Tech. Rep., Los Alamos National Laboratory. Los Alamos National Laboratory, Technical Report.
26.
Aleshin
,
A. N.
,
Gamali
,
E. G.
,
Zaitsev
,
S. G.
,
Lazareva
,
E. V.
,
Lebo
,
I. G.
, and
Rozanov
,
V. B.
,
1988
, “
Nonlinear and Transitional Stages in the Onset of the Richtmyer-Meshkov Instability
,”
Soviet Tech. Phys. Lett.
,
14
, pp.
466
488
.
27.
Velikovich
,
A. L.
, and
Dimonte
,
G.
,
1996
, “
Nonlinear Perturbation Theory of the Incompressible Richtmyer-Meshkov Instability
,”
Phys. Rev. Lett.
,
76
, pp.
3112
3115
.10.1103/PhysRevLett.76.3112
28.
Roache
,
P.
,
1998
,
Verification and Validation in Computational Science and Engineering
,
Hermosa Publishers
Socorro, New Mexico.
You do not currently have access to this content.