Mix is a critical input to hydro simulations used in modeling chemical or nuclear reaction processes in fluids. It has been identified as a possible cause of performance degradation in inertial confinement fusion (ICF) targets. Mix contributes to numerical solution uncertainty through its dependence on turbulent transport coefficients, themselves uncertain and even controversial quantities. These coefficients are a central object of study in this paper, carried out in an Richtmyer–Meshkov unstable circular two-dimensional (2D) geometry suggested by an ICF design. We study a pre-turbulent regime and a fully developed regime. The former, at times between the first shock passage and reshock, is characterized by mixing in the form of interpenetrating but coherent fingers and the latter, at times after reshock, has fully developed turbulent structures. This paper focuses on the scaling of spatial averages of turbulence coefficients under mesh refinement and under variation of molecular viscosity [i.e., Reynolds number (Re)]. We find that the coefficients scale under mesh refinement with a power of spatial grid spacing derived from the Kolmogorov 2/3 law, especially after reshock. We document the dominance of turbulent over molecular transport and convergence of the turbulent transport coefficients in the infinite Re limit. The transport coefficients do not coincide for the pre- and post-reshock flow regimes, with significantly stronger transport coefficients after reshock.

References

References
1.
Dimotakis
,
P. E.
,
2000
, “
The Mixing Transition in Turbulent Flows
,”
J. Fluid Mech.
,
409
, pp.
69
98
.10.1017/S0022112099007946
2.
Smeeton
,
V. S.
, and
Youngs
,
D. L.
,
1987
, “
Experimental Investigation of Turbulent Mixing by Rayleigh-Taylor Instability (Part 3)
,” AWE Report No. 0 35/87.
3.
Lim
,
H.
,
Iwerks
,
J.
,
Glimm
,
J.
, and
Sharp
,
D. H.
,
2010
, “
Nonideal Rayleigh-Taylor Mixing
,”
Proc. Natl. Acad. Sci. U.S.A.
,
107
(
29
), pp.
12786
12792
.10.1073/pnas.1002410107
4.
Lim
,
H.
,
Iwerks
,
J.
,
Yu
,
Y.
,
Glimm
,
J.
, and
Sharp
,
D. H.
,
2010
, “
Verification and Validation of a Method for the Simulation of Turbulent Mixing
,”
Phys. Scr.
,
T142
, p.
014014
.10.1088/0031-8949/2010/T142/014014
5.
Melvin
,
J.
,
Rao
,
P.
,
Kaufman
,
R.
,
Lim
,
H.
,
Yu
,
Y.
,
Glimm
,
J.
, and
Sharp
,
D. H.
,
2013
,
“Atomic Scale Mixing for Inertial Confinement Fusion Associated Hydro Instabilities.”
High Energy Density Phys.
,
9
, pp.
288
298
.10.1016/j.hedp.2013.01.007
6.
Kraichnan
,
R. H.
,
1967
, “
Inertial Ranges in Two-Dimensional Turbulence
,”
J. Fluid Mech.
,
16
, pp.
1417
1423
.
7.
Boffetta
,
G.
,
2007
, “
Energy and Enstrophy Fluxes in the Double Cascade of Two-Dimensional Turbulence
,”
J. Fluid Mech
,
589
, pp.
253
260
.10.1017/S0022112007008014
8.
Lim
,
H.
,
Yu
,
Y.
,
Glimm
,
J.
,
Li
,
X. L.
, and
Sharp
,
D. H.
,
2010
, “
Subgrid Models for Mass and Thermal Diffusion in Turbulent Mixing
,”
Phys. Scr.
,
T142
, p.
014062
.10.1088/0031-8949/2010/T142/014062
9.
George
,
E.
,
Glimm
,
J.
,
Grove
,
J. W.
,
Li
,
X.-L.
,
Liu
,
Y.-J.
,
Xu
,
Z.-L.
, and
Zhao
,
N.
,
2003
, “
Simplification, Conservation and Adaptivity in the Front Tracking Method
,”
Hyperbolic Problems: Theory, Numerics, Applications
,
T.
Hou
and
E.
Tadmor
, Eds.,
Springer
,
Berlin
, Germany, pp.
175
184
.
10.
Bo
,
W.
,
Liu
,
X.
,
Glimm
,
J.
, and
Li
,
X.
,
2011
, “
A Robust Front Tracking Method: Verification and Application to Simulation of the Primary Breakup of a Liquid Jet
,”
SIAM J. Sci. Comput.
,
33
, pp.
1505
1524
.10.1137/10079135X
11.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
, pp.
1760
1765
.10.1063/1.857955
12.
Moin
,
P.
,
Squires
,
K.
,
Cabot
,
W.
, and
Lee
,
S.
,
1991
, “
A Dynamic Subgrid-Scale Model for Compressible Turbulence and Scalar Transport
,”
Phys. Fluids A
,
3
, pp.
2746
2757
.10.1063/1.858164
13.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge
, NY.
14.
Ma
,
T.
,
2006
, “
Large Eddy Simulation Of Variable Density Flows
,” Ph.D. thesis, University of Maryland, College Park, MD.
15.
Kaman
,
T.
,
Kaufman
,
R.
,
Glimm
,
J.
, and
Sharp
,
D. H.
,
2012
, “
Uncertainty Quantification for Turbulent Mixing Flows: Rayleigh-Taylor Instability
,”
Uncertainty Quantification in Scientific Computing
,
A.
Dienstfrey
and
R.
Boisvert
, Eds., Vol.
377
of IFIP Advances in Information and Communication Technology,
Springer
,
New York
, pp.
212
225
.
16.
Kaman
,
T.
,
Lim
,
H.
,
Yu
,
Y.
,
Wang
,
D.
,
Hu
,
Y.
,
Kim
,
J.-D.
,
Li
,
Y.
,
Wu
,
L.
,
Glimm
,
J.
,
Jiao
,
X.
,
Li
,
X.-L.
, and
Samulyak
,
R.
,
2011
, “
A Numerical Method for the Simulation of Turbulent Mixing and Its Basis in Mathematical Theory
,”
Lecture Notes on Numerical Methods for Hyperbolic Equations: Theory and Applications: Short Course Book
,
CRC/Balkema
,
London
, pp.
105
129
.
17.
Kaufman
,
R.
,
Kaman
,
T.
,
Yu
,
Y.
, and
Glimm
,
J.
,
2012
, “
Stochastic Convergence and the Software Tool W*
,” Proceeding Book of International Conference to Honour Professor E. F. Toro,
CRC, Taylor and Francis Group
,
London
, pp.
37
41
.
18.
Lim
,
H.
,
Kaman
,
T.
,
Yu
,
Y.
,
Mahadeo
,
V.
,
Xu
,
Y.
,
Zhang
,
H.
,
Glimm
,
J.
,
Dutta
,
S.
,
Sharp
,
D. H.
, and
Plohr
,
B.
,
2012
, “
A Mathematical Theory for LES Convergence
,”
Acta Math. Sci.
,
32
, pp.
237
258
.10.1016/S0252-9602(12)60015-0
You do not currently have access to this content.