The evolution of double elliptic heavy-gas (SF6) cylinders impacted by a planar shock wave is studied by high-speed camera diagnostics. The minor axes (b) of the elliptic cross sections are aligned perpendicular to the shock direction. While the cylinder dimensions are fixed, we adjust the center-to-center separation s between the cylinders. The resulting flow morphologies are visualized and the interaction between double cylinders is analyzed. When s/b = 4.0 or 3.0, the two elliptical cylinders roll up into two counter-rotating vortex pairs and their interaction is weak. When s/b decreases to 2.0 or 1.2, due to strong interaction of the two inner vortices, the inner structure completely disappears and the flow morphology evolves into one counter-vortex pair. Compared with the s/b = 2.0 case, larger amount of baroclinic vorticity is produced in the s/b = 1.2 case, and the morphology is similar to the single elliptic cylinder case, with a second vortex phenomenon occurring at later times. As s/b increases, the extent of cylinder-cylinder interaction becomes weaker, and the integral height of double elliptic cylinders grows while the length decreases.

References

References
1.
Richtmyer
,
R. D.
,
1960
, “
Taylor Instability in Shock Acceleration of Compressible Fluids
,”
Commun. Pure Appl. Math.
,
13
, pp.
297
319
.10.1002/cpa.3160130207
2.
Meshkov
,
E. E.
,
1969
, “
Instability of the Interface of Two Gases Accelerated by a Shock Wave
,”
Fluid Dyn.
,
4
, pp.
101
104
.10.1007/BF01015969
3.
Lindl
,
D. L.
,
McCrory
,
R. L.
, and
Campbell
,
E. M.
,
1992
, “
Progress Toward Ignition and Burn Propagation in Inertial Confinement Fusion
,”
Phys. Today
,
45
(
9
), pp.
32
40
.10.1063/1.881318
4.
Arnett
,
W. D.
,
Bahcall
,
J. N.
,
Kirshner
,
R. P.
, and
Woosley
,
S. E.
,
1989
, “
Supernova 1987A
,”
Ann. Rev. Astron. Astrophys.
,
27
, pp.
629
700
.10.1146/annurev.aa.27.090189.003213
5.
Yang
,
J.
,
Kubota
,
T.
, and
Zukoski
,
E. E.
,
1993
, “
Application of Shock-Induced Mixing to Supersonic Combustion
,”
AIAA J.
,
31
(
5
), pp.
854
862
.10.2514/3.11696
6.
Brouillette
M
.,
2002
, “
The Richtmyer–Meshkov Instability
,”
Ann. Rev. Fluid Mech.
,
34
, pp.
445
468
.10.1146/annurev.fluid.34.090101.162238
7.
Zabusky
,
N
.,
1999
, “
Vortex Paradigm for Accelerated Inhomogeneous Flows: Visiometrics for the Rayleigh–Taylor and Richtmyer–Meshkov Environments
,”
Ann. Rev. Fluid Mech.
,
31
, pp.
495
536
.10.1146/annurev.fluid.31.1.495
8.
Ranjan
,
D.
,
Oakley
,
J.
, and
Bonazza
,
R.
,
2011
, “
Shock-Bubble Interactions
,”
Ann. Rev. Fluid Mech.
,
43
, pp.
117
140
.10.1146/annurev-fluid-122109-160744
9.
Prestridge
,
R.
,
Orlicz
,
G.
,
Balasubramanian
,
S.
, and
Balakumar
,
B.
,
2013
, “
Experiments of the Richtmyer–Meshkov Instability
,”
Philos. Trans. R. Soc. A
,
371
,
20120165
.10.1098/rsta.2012.0165
10.
Haas
,
J. F.
, and
Sturtevant
,
B.
,
1987
, “
Interaction of Weak Shock Waves With Cylindrical and Spherical Gas Inhomogeneities
,”
J. Fluid Mech.
,
181
, pp.
41
76
.10.1017/S0022112087002003
11.
Jacobs
,
J. W.
,
1991
, “
PLIF Flow Visualization of Shock Accelerated Light and Heavy Gas Cylinders
,”
Proceedings of the 3rd International Workshop of Compressible Turbulent Mixing
, Royaumont, France, pp.
45
55
.
12.
Jacobs
,
J. W.
,
1993
, “
The Dynamics of Shock-Accelerated Light and Heavy Gas Cylinders
,”
Phys. Fluids A
,
5
, pp.
2239
2247
.10.1063/1.858562
13.
Prestridge
,
K.
,
Vorobieff
,
P.
,
Rightley
,
P. M.
, and
Benjamin
R. F.
,
2000
, “
Validation of an Instability Growth Model Using Particle Image Velocimetry Measurements
,”
Phys. Rev. Lett.
,
84
, pp.
4353
4356
.10.1103/PhysRevLett.84.4353
14.
Prestridge
,
K.
,
Rightley
,
P. M.
,
Vorobieff
,
P.
,
Benjamin
,
R. F.
, and
Kurnit
,
N. A.
,
2000
, “
Simultaneous Density-Field Visualization and PIV of a Shock-Accelerated Gas Curtain
,”
Exp. Fluids
,
29
, pp.
339
346
.10.1007/s003489900091
15.
Tomkins
,
C.
,
Prestridge
,
K.
,
Rightley
,
P.
,
Vorobieff
,
P.
, and
Benjamin
,
R. F.
,
2002
, “
Flow Morphologies of Two Shock-Accelerated Unstable Gas Cylinders
,”
J. Visualization
,
5
(
3
), pp.
273
283
.10.1007/BF03182335
16.
Tomkins
,
C.
,
Prestridge
,
K.
,
Rightley
,
P.
,
Marr-Lyon
,
M.
,
Vorobieff
,
P.
, and
Benjamin
,
R. F.
,
2003
, “
A Quantitative Study of the Interaction of Two Richtmyer–Meshkov-Unstable Gas Cylinders
,”
Phys. Fluids
,
15
, pp.
986
1004
.10.1063/1.1555802
17.
Rightley
,
P. M.
,
Vorobieff
,
P.
, and
Benjamin
,
R. F.
,
1997
, “
Evolution of a Shock-Accelerated Thin Fluid Layer
,”
Phys. Fluids
,
9
, pp.
1770
1782
.10.1063/1.869299
18.
Rightley
,
P. M.
,
Vorobieff
,
P.
,
Martin
,
R.
, and
Benjamin
,
R. F.
,
1999
, “
Experimental Observations of the Mixing Transition in a Shock-Accelerated Gas Curtain
,”
Phys. Fluids
,
11
, pp.
186
200
.10.1063/1.869911
19.
Zou
,
L. Y.
,
Liu
,
C. L.
,
Tan
,
D. W.
,
Huang
,
W. B.
, and
Luo
,
X. S.
,
2010
, “
On Interaction of Shock Wave With Elliptic Gas Cylinder
,”
J. Visualization
,
13
, pp.
347
353
.10.1007/s12650-010-0053-y
20.
Bai
,
J. S.
,
Zou
,
L. Y.
,
Wang
,
T.
,
Liu
,
K.
,
Huang
,
W. B.
,
Liu
,
J. H.
,
Li
,
P.
,
Tan
,
D. W.
, and
Liu
,
C. L.
,
2010
, “
Experimental and Numerical Study of Shock-Accelerated Elliptic Heavy Gas Cylinders
,”
Phys. Rev. E
,
82
, p.
056318
.10.1103/PhysRevE.82.056318
21.
Friedman
,
G.
,
Prestridge
,
K.
,
Ricardo
,
M. A.
, and
Leftwich
,
M.
,
2012
, “
Shock-Driven Mixing: Experimental Design and Initial Conditions
,”
Proceedings of the AIP Conference on Shock Compression of Condensed Matter
, 2011, pp.
1647
1650
.
22.
Zoldi
,
C
.,
2002
, “
A Numerical and Experimental Study of a Shock-Accelerated Heavy Gas Cylinder
,” Ph.D. thesis, Department of Applied Mathematics, State University of New York at Stony Brook, New York.
You do not currently have access to this content.