We consider the problem of a turbulent mixing zone (TMZ), initially submitted to coupled effects of axisymmetric strain and stratification, then subsequently accelerated. The TMZ grows in the latter stage due to a rapid mixing induced by the Rayleigh-Taylor instability. It is shown that the short time dynamics is simply determined by only two parameters expressing the structure of the turbulent density field, one related to the mixing, the other to the dimensionality of the flow. These quantities are studied by rapid distortion theory and by several homogeneous direct numerical simulations performed in the moving frame of the mean flow. The implications for modeling are discussed, the influence of anisotropy is presented.

References

References
1.
Rayleigh
,
L.
,
1884
, “
Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density
,”
Proc. R. Soc. London
,
14
, pp.
170
177
.
2.
Taylor
,
G.
,
1950
, “
The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes
,”
Proc. R. Soc. London
,
201
, pp.
192
196
.10.1098/rspa.1950.0052
3.
Lindl
,
J.
,
1995
, “
Development of the Indirect-Drive Approach to Inertial Confinement Fusion and the Target Physics Basis for Ignition and Gain
,”
Phys. Plasma
,
2
, pp.
3933
4024
.10.1063/1.871025
4.
Chandrasekhar
,
S.
,
1961
,
Hydrodynamics and Hydromagnetic Stability
,
Dover
,
New York
.
5.
Zhou
,
Y.
,
Robey
,
H.
, and
Buckingham
,
A.
,
2003
, “
Onset of Turbulence in Accelerated High-Reynolds-Number Flow
,”
Phys. Rev. E
,
67
, p.
056305
.10.1103/PhysRevE.67.056305
6.
Youngs
,
D. L.
,
1984
, “
Numerical Simulation of Turbulent Mixing by Rayleigh-Taylor Instability
,”
Physica D
,
12
, pp.
32
44
.10.1016/0167-2789(84)90512-8
7.
Llor
,
A.
,
2005
, “
Statistical Hydrodynamics Models for Developed Instability Flows
,”
Lect. Notes Phys. 681
,
Springer-Verlag
,
Berlin, Germany
.
8.
Dimonte
,
G.
,
Youngs
,
D. L.
,
Dimits
,
A.
,
Weber
,
S.
,
Mariak
,
M.
,
Wunch
,
S.
,
Garasi
,
C.
,
Robinson
,
A.
,
Andrews
,
M.
,
Ramaprabhu
,
P.
,
Calder
,
A. C.
,
Fryxell
,
B.
,
Biello
,
J.
,
Dursi
,
L.
,
Macneice
,
P.
,
Olson
,
K.
,
Ricker
,
P.
,
Rosner
,
R.
,
Timmes
,
H.
,
Tufo
,
H.
,
Young
,
Y.-N.
, and
Zingale
,
M.
,
2004
, “
A Comparative Study of the Turbulent Rayleigh-Taylor Instability Using High-Resolution Three-Dimensional Numerical Simulations: The Alpha-Group Collaboration
,”
Phys. Fluids
,
16
, pp.
1668
1693
.10.1063/1.1688328
9.
Youngs
,
D.
,
2010
, “
Large Eddy Simulation and 1D/2D Engineering Models for Rayleigh-Taylor Mixing
,”
IWPCTM: 12th International Workshop on the Physics of Compressible Turbulent Mixing
,
Moscow, Russia
, July 12–17.
10.
Sagaut
,
P.
, and
Cambon
,
C.
,
2008
,
Homogeneous Turbulence Dynamics
,
Cambridge University
,
Cambridge, England
.
11.
Besnard
,
D. C.
,
Harlow
,
F.
,
Rauenzahn
,
R.
, and
Zemach
,
C.
,
1996
, “
Spectral Transport Model for Turbulence
,”
Comp. Fluid Dyn.
,
8
, pp.
1
35
.10.1007/BF00312400
12.
Kassinos
,
S. C.
,
Reynolds
,
W. C.
, and
Roger
,
M. M.
,
2001
, “
One-Point Turbulence Structure Tensors
,”
J. Fluids. Mech.
,
428
, pp.
213
248
.10.1017/S0022112000002615
13.
Cambon
,
C.
, and
Gréa
,
B.-J.
,
2013
, “
The Role of Directionality on the Structure and Dynamics of Strongly Anisotropic Turbulent Flows
,”
J. Turb.
,
14
, pp.
50
71
.10.1080/14685248.2012.762455
14.
Gréa
,
B.-J.
,
2013
, “
The Rapid Acceleration Model and Growth Rate of a Turbulent Mixing Zone Induced by Rayleigh-Taylor Instability
,”
Phys. Fluids
,
25
, p.
015118
.10.1063/1.4775379
15.
Hunt
,
J.
, and
Carruthers
,
D.
,
1990
, “
Rapid Distortion Theory and the Problems of Turbulence
,”
J. Fluids Mech.
,
502
, pp.
233
271
.10.1017/S0022112090002075
16.
Hanson
,
J.
,
Rosen
,
P.
,
Goldack
,
T.
,
Oades
,
K.
,
Fieldouse
,
P.
,
Cowperthwaite
,
N.
,
Youngs
,
D.
,
Mawhinney
,
N.
, and
Baxter
,
A. J.
,
1990
, “
Radiation Driven Planar Foil Instability and Mix Experiments at the Awe Helen Laser
,”
Laser Part Beams
,
8
, pp.
51
71
.10.1017/S0263034600007825
17.
Dimonte
,
G.
,
2000
, “
Spanwise Homogeneous Buoyancy-Drag Model for Rayleigh-Taylor Mixing and Experimental Evaluation
,”
Phys. Plasma
,
7
, pp.
2255
2269
.10.1063/1.874060
18.
Oron
,
D.
,
Arazi
,
L.
,
Kartoon
,
D.
,
Rikanati
,
A.
,
Alon
,
U.
, and
Shvarts
,
D.
,
2001
, “
Dimensionality Dependence of the Rayleigh-Taylor and Richtmyer-Meshkov Instability Late-Time Scaling Laws
,”
Phys. Plasma
,
8
, pp.
2883
2889
.10.1063/1.1362529
19.
Ramshaw
,
J. D.
,
1998
, “
Simple Model for Linear and Nonlinear Mixing at Unstable Fluid Interfaces With Variable Acceleration
,”
Phys. Rev. E
,
58
, pp.
5834
5840
.10.1103/PhysRevE.58.5834
20.
Soulard
,
O.
,
Griffond
,
J.
, and
Souffland
,
D.
,
2012
, “
Pseudocompressible Approximation and Statistical Turbulence Modeling: Application to Shock Tube Flows
,”
Phys. Rev. E
,
85
, p.
026307
.10.1103/PhysRevE.85.026307
21.
Danckwerts
,
P. V.
,
1952
, “
The Definition and Measurement of Some Characteristics of Mixtures
,”
Appl. Sci. Res.
,
3
, pp.
279
296
.
22.
Youngs
,
D. L.
,
1994
, “
Numerical Simulation of Mixing by Rayleigh-Taylor and Richtmyer-Meshkov Instabilities
,”
Laser Part. Beams
,
12
, pp.
725
750
.10.1017/S0263034600008557
23.
Andrews
,
M.
, and
Spalding
,
D.
,
1990
, “
A Simple Experiment to Investigate 2D Mixing by Rayleigh-Taylor Instability
,”
Phys. Fluids
,
2
, pp.
922
927
.10.1063/1.857652
24.
Zhou
,
Y.
,
Remington
,
B.
,
Robey
,
H.
,
Cook
,
A.
,
Glendinning
,
S.
,
Dimits
,
A.
,
Buckingham
,
A.
,
Zimmerman
,
G.
,
Burke
,
E.
,
Peyser
,
T.
, and
Cabot
,
W.
,
2003
, “
Progress in Understanding Turbulent Mixing Induced by Rayleigh–Taylor and Richtmyer–Meshkov Instabilities
,”
Phys. Plasmas
,
10
, pp.
1883
1896
.10.1063/1.1560923
25.
Godeferd
,
F.
, and
Cambon
,
C.
,
1994
, “
Detailed Investigation of Energy Transfers in Homogeneous Stratified Turbulence
,”
Phys. Fluids
,
6
, pp.
2084
2100
.10.1063/1.868214
26.
Hanazaki
,
H.
, and
Hunt
,
J. C. R.
,
1996
, “
Linear Processes in Unsteady Stably Stratified Turbulence
,”
J. Fluids Mech.
,
318
, pp.
303
337
.10.1017/S0022112096007136
27.
Galmiche
,
M.
, and
Hunt
,
J. C. R.
,
2002
, “
The Formation of Shear and Density Layers in Stably Stratified Turbulent Flows: Linear Processes
,”
J. Fluids Mech.
,
455
, pp.
243
262
.10.1017/S002211200100739X
28.
Kutcherenko
,
Y.
,
Neuvazhaev
,
V.
, and
Pylaev
,
A.
,
1993
, “
Behavior of Gravitational Turbulent Mixing Region Under Conditions Leading to Separation
,”
IWPCTM: 4th International Workshop on the Physics of Compressible Turbulent Mixing
.
29.
Dimonte
,
G.
,
Ramaprabhu
,
P.
, and
Andrews
,
M. J.
,
2007
, “
Rayleigh-Taylor Instability With Complex Acceleration History
,”
Phys. Rev. E
,
76
, p.
046313
.10.1103/PhysRevE.76.046313
30.
Rogallo
,
R. S.
,
1981
, “
Numerical Experiments in Homogeneous Turbulence
,” NASA, Technical Report No. 81315.
31.
Griffond
,
J.
,
Gréa
,
B.-J.
, and
Soulard
,
O.
,
2012
, “
Unstably Stratified Homogeneous Turbulence as a Tool for Turbulent Mixing Modeling
,”
J. Fluids Eng.
(submitted).10.1115/1.4025675
32.
Pope
,
S.
,
2000
,
Turbulent Flows
,
Cambridge University
,
Cambridge, England
.
33.
Kida
,
S.
, and
Hunt
,
J. C. R.
,
1989
, “
Interaction Between Different Scales of Turbulence Over Short Times
,”
J. Fluids Mech.
,
201
, pp.
411
445
.10.1017/S0022112089000996
34.
Zhou
,
Y.
,
2010
, “
Renormalization Group Theory for Fluid and Plasma Turbulence
,”
Phys. Rep.
,
488
, pp.
1
49
.10.1016/j.physrep.2009.04.004
35.
Livescu
,
D.
,
Ristorcelli
,
J. R.
,
Gore
,
R. A.
,
Dean
,
S. H.
,
Cabot
,
W. H.
, and
Cook
,
A. W.
,
2009
, “
High Reynolds Number Rayleigh–Taylor Turbulence
,”
J. Turb.
,
10
, pp.
1
32
.10.1080/14685240902870448
You do not currently have access to this content.