The combined effect of viscosity, surface tension, and the compressibility on the nonlinear growth rate of Rayleigh-Taylor (RT) instability has been investigated. For the incompressible case, it is seen that both viscosity and surface tension have a retarding effect on RT bubble growth for the interface perturbation wave number having a value less than three times of a critical value (kc=(ρh-ρl)g/T, T is the surface tension). For the value of wave number greater than three times of the critical value, the RT induced unstable interface is stabilized through damped nonlinear oscillation. In the absence of surface tension and viscosity, the compressibility has both a stabilizing and destabilizing effect on RTI bubble growth. The presence of surface tension and viscosity reduces the growth rate. Above a certain wave number, the perturbed interface exhibits damped oscillation. The damping factor increases with increasing kinematic viscosity of the heavier fluid and the saturation value of the damped oscillation depends on the surface tension of the perturbed fluid interface and interface perturbation wave number. An approximate expression for asymptotic bubble velocity considering only the lighter fluid as a compressible one is presented here. The numerical results describing the dynamics of the bubble are represented in diagrams.

References

References
1.
Rayleigh
,
L.
,
1883
, “
Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density
,”
Proc. London Math. Soc.
,
14
, pp.
170
177
.
2.
Richtmyer
,
R. D.
,
1960
, “
Taylor Instability in a Shock Acceleration of Compressible Fluids
,”
Commun. Pure Appl. Math.
,
13
, pp.
297
319
.10.1002/cpa.3160130207
3.
Bernstein
,
I. B.
, and
Book
,
D. L.
,
1983
, “
Effect of Compressibility on Rayleigh-Taylor Instability
,”
Phys. Fluids
,
26
, p.
453
.10.1063/1.864158
4.
Yang
,
Y.
, and
Zhang
,
Q.
,
1993
, “
General Properties of a Multilayer Fluid System
,”
Phys. Fluids A
,
5
, p.
1167
.10.1063/1.858602
5.
Sharp
,
D. H.
,
1984
, “
An Overview of Rayleigh-Taylor Instability
,”
Physica D
,
12
, pp.
3
10
.10.1016/0167-2789(84)90510-4
6.
Plesset
,
M. S.
, and
Hsieh
,
D.
,
1964
, “
General Analysis of the Stability of Superposed Fluids
,”
Phys. Fluids
,
7
, p.
1099
.10.1063/1.1711348
7.
Baker
,
L.
,
1983
, “
Compressible Rayleigh-Taylor Instability
,”
Phys. Fluids
,
26
, p.
950
.10.1063/1.864245
8.
Chandrasekhar
,
S.
,
1981
,
Hydrodynamic and Hydromagnetic Stability
,
Dover Publications
,
New York
, pp.
428
452
.
9.
Chhajlani
,
R. K.
, and
Vaghela
,
D. S.
,
1989
, “
Rayleigh-Taylor Instability of Ionized Viscous Fluids With FLR-Corrections and Surface-Tension
,”
Astrophys. Space Sci.
,
155
, pp.
257
269
.10.1007/BF00643863
10.
Mikaelian
,
K. O.
,
1993
, “
Effect of Viscosity on Rayleigh-Taylor and Richtmyer-Meshkov Instability
,”
Phys. Rev. E
,
47
, p.
375
.10.1103/PhysRevE.47.375
11.
Bhatia
,
P. K.
,
1974
, “
Rayleigh-Taylor Instability of a Viscous Compressible Plasma of Variable Density
,”
Astrophys. Space Sci.
,
26
, pp.
319
325
.10.1007/BF00645614
12.
Carlès
,
P.
, and
Popinet
,
S.
,
2002
, “
The Effect of Viscosity, Surface Tension and Non-Linearity on Richtmyer Meshkov Instability
,”
Eur. J. Mech. B/Fluids
,
21
, pp.
511
526
.10.1016/S0997-7546(02)01199-8
13.
Sohn
,
S. I.
,
2009
, “
Effects of Surface Tension and Viscosity on the Growth Rates of Rayleigh-Taylor and Richtmyer-Meshkov Instabilities
,”
Phys. Rev. E
,
80
, p.
055302
.10.1103/PhysRevE.80.055302
14.
Roy
,
S.
,
Gupta
,
M. R.
,
Khan
,
M.
,
Pant
,
H. C.
, and
Srivastava
,
M. K.
,
2010
, “
Effect of Surface Tension on the Rayleigh-Taylor and Richtmyer-Meshkov Instability Induced Nonlinear Structure at Two Fluid Interface and Their Stabilization
,”
J. Phys. Conf. Ser.
,
208
, p.
012083
.10.1088/1742-6596/208/1/012083
15.
Layzer
,
D.
,
1955
, “
On the Instability of Superposed Fluids in a Gravitational Field
,”
Astrophys. J.
,
122
, pp.
1
12
.10.1086/146048
16.
Goncharav
,
V. N.
,
2002
, “
Analytical Model of Nonlinear, Single-Mode, Classical Rayleigh-Taylor Instability at Arbitrary Atwood Numbers
,”
Phys. Rev. Lett.
,
88
, p.
134502
.10.1103/PhysRevLett.88.134502
17.
Hecht
,
J.
,
Alon
,
U.
, and
Shvarts
,
D.
,
1994
, “
Potential Flow Models of Rayleigh-Taylor and Richtmyer-Meshkov Bubble Fronts
,”
Phys. Fluids
,
6
, p.
4019
.10.1063/1.868391
18.
Drake
,
R. P.
,
2006
,
High Energy Density Physics
,
Springer
,
Berlin
, p.
175
.
19.
Gupta
,
M. R.
,
Roy
,
S.
,
Khan
,
M.
,
Pant
,
H. C.
,
Sarkar
,
S.
, and
Srivastava
,
M. K.
,
2009
, “
Effect of Compressibility on the Rayleigh-Taylor and Richtmyer-Meshkov Instability Induced Nonlinear Structure at Two Fluid Interface
,”
Phys. Plasmas
,
16
, p.
032303
.10.1063/1.3074789
20.
Zhang
,
Q.
,
1998
, “
Analytical Solutions of Layzer-Type Approach to Unstable Interfacial Fluid Mixing
,”
Phys. Rev. Lett.
,
81
, pp.
3391
3394
.10.1103/PhysRevLett.81.3391
You do not currently have access to this content.