Various computational fluid dynamics (CFD) models employed for cavitating flows are substantially based on semi-empirical assumptions about cavitation forms and liquid flows around cavitating bodies. Therefore, the model applicability must be validated with experimental data. The stages of validation of the models are analyzed here with data on cavitating hydrofoils and axisymmetric bodies in water. Results of Reynolds-averaged Navier–Stokes (RANS), large-eddy simulation (LES), detached-eddy simulation (DES), and viscous-inviscid interaction methods are compared. The necessity of simultaneous validation of several flow parameters (as cavitation inception number and location of the appearing cavity) is pointed out. Typical uncertainties in water tunnel model test data (water quality, simplified account of wall effect) and possibilities to take them into account are also discussed. The provided comparison with experimental data manifests the impossibility to describe initial stages of cavitating flows using any single model and importance of employment of a combination of models for both the cavitation zones and the flow outside of cavities.

References

References
1.
Knapp
,
R. T.
,
Daily
,
J. W.
, and
Hammitt
,
F. G.
,
1970
,
Cavitation
,
McGraw-Hill
,
New York
.
2.
Amromin
,
E. L.
,
Briancon-Marjollet
,
L.
, and
Vaciliev
,
A. V.
,
1994
, “
Sheet Cavitation: Comparison Between Measured and Calculated Length
,”
Proceedings of the International Shipbuilding Conference
, St. Petersburg, Russia.
3.
Pellone
,
C.
, and
Rowe
,
A.
,
1988
, “
Effect of Separation on Partial Cavitation
,”
ASME J. Fluids Eng.
,
110
, pp.
182
189
.10.1115/1.3243532
4.
Arakeri
,
V. H.
,
1975
, “
Viscous Effects on the Position of Cavitation Separation From Smooth Bodies
,”
J. Fluid Mech.
,
68
, pp.
779
799
.10.1017/S0022112075001231
5.
Rowe
,
A.
, and
Blottiaux
,
O.
,
1993
, “
Aspects of Modeling Partially Cavitating Flows
,”
J. Ship Res.
,
37
, pp.
34
48
.
6.
Holl
,
J. W.
, and
Billet
,
M. L.
,
1981
, “
Scale Effects on Various Types of Limited Cavitation
,”
ASME J. Fluids Eng.
,
103
, pp.
405
414
.10.1115/1.3240803
7.
Franc
,
J. P.
, and
Michel
,
J. M.
,
1985
, “
Attached Cavitation and the Boundary Layer. Experimental Investigation and Numerical Treatment
,”
J. Fluid Mech.
,
154
, pp.
63
90
.10.1017/S0022112085001422
8.
Keller.
,
A. P.
,
2001
, “
Cavitation Scale Effects Empirically Found Relations and the Correlation of Cavitation Number and Hydrodynamic Coefficients
,”
Proceedings of the Cav-2001 Symposium
, Pasadena, CA.
9.
Amromin
,
E. L.
,
1985
, “
Cavitation Flow Calculation for a Viscous Capillary Fluid
,”
Fluid Dyn.
,
20
, pp.
891
897
.
10.
Amromin
,
E. L.
,
2007
, “
Determination of Cavity Detachment for Sheet Cavitation
,”
ASME J. Fluids Eng.
,
129
, pp.
1105
1111
.10.1115/1.2754312
11.
Stern
,
F.
,
Yang
,
J.
,
Wang
,
Z.
,
Sadat-Hosseini
,
H.
,
Mousaviraad
,
M.
,
Bhushan
,
S.
, and
Xing
,
T.
,
2012
, “
Computational Ship Hydrodynamics: Nowadays and Way Forward
,”
Proceedings of the 29th Symposium on Naval Hydrodynamics
, Gothenburg, Sweden.
12.
Kinnas
,
S. I.
,
1998
, “
The Prediction of Unsteady Sheet Cavitation
,”
Proceedings of the 3rd International Symposium on Cavitation
, Grenoble, France.
13.
Williams
,
M.
,
Kawakami
,
E.
,
Amromin
,
E.
, and
Arndt
,
R.
,
2009
, “
Effect of Surface Characteristics on Hydrofoil Cavitation
,”
Proceedings of the 7th International Symposium on Cavitation
, Ann Arbor, MI.
14.
Arndt
,
R. E. A.
,
Amromin
,
E. L.
, and
D Hambleton
,
W. T.
,
2009
, “
Cavitation Inception in the Wake of a Jet-Driven Body
,”
ASME J. Fluids. Eng.
,
131
(
11
), p.
111302
.10.1115/1.4000388
15.
Kubota
,
A.
,
Kato
,
H.
, and
Yamagushi
,
H.
,
1992
, “
A New Modeling of Cavitating Flows: A Numerical Study of Unsteady Cavitation of a Hydrofoil Section
,”
J. Fluid Mech.
,
240
, pp.
59
96
.10.1017/S002211209200003X
16.
Coutier-Delgosha
,
O.
,
Devillers
,
J -F.
,
Pichon
,
T.
,
Vabre
,
A.
,
Woo
,
R.
, and
Legoupil
,
S.
,
2006
, “
Internal Structure and Dynamics of Sheet Cavitation
,”
Phys. Fluids
,
16
, p.
017103
.10.1063/1.2149882
17.
Wu
,
X.
, and
Chahine
,
G. L.
,
2007
, “
Characterization of the Content of the Cavity Behind a High-Speed Supercavitating Body
,”
ASME J. Fluids Eng.
,
129
, pp.
136
145
.10.1115/1.2409356
18.
Coutier-Delgosha
,
O.
,
Deniset
,
F.
,
Astolfi
,
J. A.
, and
Leroux
,
J.-B.
,
2007
, “
Numerical Prediction of Cavitating Flow on a Two-Dimensional Symmetrical Hydrofoil and Comparison to Experiments
,”
ASME J. Fluids Eng.
,
129
, pp.
279
292
.10.1115/1.2427079
19.
Riesman
,
G. F.
,
Wang
,
Y.-C.
, and
Brennen
,
C. E.
,
1998
, “
Observation of Shock Waves in Cloud Cavitation
,”
J. Fluid Mech.
,
355
, pp.
255
283
.10.1017/S0022112097007830
20.
Kim
,
S.-E.
,
2009
, “
A Numerical Study of Unsteady Cavitation on a Hydrofoil
,”
Proceedings of the 7th International Symposium on Cavitation
, Ann Arbor, MI.
21.
Leder
,
A. T.
, and
Ceccio
,
S. L.
,
1998
, “
Examination of the Flow Near the Leading Edge of Attached Cavitation. Part 1: Detachment of Two-Dimensional and Axisymmetric Cavities
,”
J. Fluid Mech.
,
376
, pp.
61
90
.10.1017/S0022112098002766
22.
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
,
Chyczewski
,
T. S.
,
Lindau
,
J. W.
,
Gibeling
,
H. J.
,
Venkateawaran
,
S.
, and
Govindan
,
T. R.
,
2000
, “
A Preconditioned Navier–Stokes Method for Two-Phase Flows With Application to Cavitation Prediction
,”
Comput. Fluids
,
29
, pp.
849
875
.10.1016/S0045-7930(99)00039-0
23.
Ahuja
,
V.
,
Hosangadi
,
A.
, and
Arunajatesan
,
S.
,
2001
, “
Simulation of Cavitating Flows Using Hybrid Unstructured Meshes
,”
ASME J. Fluids Eng.
,
123
, pp.
331
338
.10.1115/1.1362671
24.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
, pp.
617
624
.10.1115/1.1486223
25.
Kuiper
,
G.
,
1981
,
Cavitation Inception on Ship Propeller Models
,
Netherlands Ship Model Basin
,
Wageningen, The Netherlands
.
26.
Amromin
,
E. L.
,
2013
, “
Analysis of the Airfoil Stall With a Modification of Viscous-Inviscid Interaction Concept
,”
ASME J. Fluids Eng.
,
135
(
5
), p.
051105
.10.1115/1.4023784
27.
Simpson
,
R. L.
,
1989
, “
Turbulent Boundary Layer Separation
,”
Ann. Rev. Fluid Mech.
,
21
, pp.
205
234
.10.1146/annurev.fl.21.010189.001225
28.
Amromin
,
E. L.
,
2007
, “
Analysis of Vortex Core in Steady Turbulent Flow
,”
Phys. Fluids
,
19
, p.
118108
.10.1063/1.2813045
29.
Chesnakas
,
C. J.
, and
Jessup
,
C. D.
,
2003
, “
Tip-Vortex Induced Cavitation on a Ducted Propulsor
,” ASME Paper No. FEDSM 2003-45320.
30.
Agarwal
,
A.
,
2010
, “
Analysis of Vortex Core in Turbulent Flow
,”
Proceedings of the 37th National and 4th International Conference on Fluid Mechanics and Fluid Power
, Madras, India.
31.
Katz
,
J.
,
1984
, “
Cavitation Phenomena Within Regions of Flow Separation
,”
J. Fluid Mech.
,
140
, pp.
397
436
.10.1017/S0022112084000665
32.
Kermeen
,
R. W.
,
1956
, “
Water Tunnel Tests of NACA 4412 and Walchner 7 Profile Hydrofoils in Noncavitating and Cavitating Flows
,” Hydrodynamic Laboratory, California Institute of Technology, Pasadena, CA, Report No. 47-5.
33.
Arndt
,
R. E. A.
, and
Keller
,
A.
,
1992
, “
Water Quality Effects on Cavitation Inception in a Trailing Vortex
,”
ASME J. Fluids Eng.
,
114
, pp.
430
438
.10.1115/1.2910049
34.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University
,
New York
.
35.
France
,
J. P.
, and
Michel
,
J. M.
,
2005
,
Fundamentals of Cavitation
,
Kluwer Academic
,
Dordrecht, the Netherlands
.
36.
van der Meulen
,
J. H. J.
,
1980
, “
Boundary Layer and Cavitation Studies of NACA 16-012 and NACA 4412 Hydrofoils
,”
Proceedings of the 13th Symposium on Naval Hydrodynamics
, Tokyo, Japan.
37.
Blake
,
W. K.
,
1986
,
Mechanics of Flow-Induced Sound and Vibration
,
Academic Press
,
New York
.
38.
Jessup
,
S. D.
, and
Wang
,
H. C.
,
1997
, “
Propeller Design and Evaluation of a High Speed Patrol Boat Incorporating Iterative Analysis With Panel Method
,”
Proceedings of the Propeller/Shafting 1997 Symposium
, Virginia Beach, VA.
39.
Gorshkov
,
A. S.
, and
Kalashnikov
,
Y. N.
,
1970
, “
The Scale Effect on Incipient Stage of Cavitation on Body of Revolution
,”
Trans. Krylov Ship Res. Inst.
,
258
, pp.
40
53
(in Russian).
40.
Matsunari
,
H.
,
Watanabe
,
S.
,
Konishi
,
Y.
,
Suefuji
,
N.
, and
Furukawa
,
A.
,
2012
, “
Experimental/Numerical Study on Cavitating Flow Around Clark Y11.7% Hydrofoil
,”
Proceedings of the 8th International Symposium on Cavitation
, Singapore, pp.
358
363
.
41.
Kim
,
S.-E.
, and
Schroeder
,
S.
,
2010
, “
Numerical Study of Thrust-Breakdown Due to Cavitation on a Hydrofoil, a Propeller, and a Waterjet
,”
Proceedings of the 28th Symposium on Naval Hydrodynamics
, Pasadena, CA.
42.
Kopriva
,
J.
,
Amromin
,
E. L.
,
Arndt
,
R. E. A.
,
Wosnik
,
M.
, and
Kovinskaya
,
S. I.
,
2007
, “
High Performance Partially Cavitating Hydrofoils
,”
J. Ship Res.
,
51
, pp.
313
320
.
43.
Ihara
,
A.
,
Watanabe
,
H.
, and
Shizukuishi
,
S.
,
1989
, “
Experimental Research of the Effect of Sweep on Unsteady Hydrofoil Loading in Cavitation
,”
ASME J. Fluids Eng.
,
109
, pp.
263
270
.10.1115/1.3243640
44.
Astolfi
,
J. A.
,
Dorange
,
P.
,
Billard
,
J. Y.
, and
Cid Tomas
,
I.
,
2000
, “
An Experimental Investigation of Cavitation Inception and Development on a Two-Dimensional Eppler Hydrofoil
,”
ASME J. Fluids Eng.
,
122
, pp.
164
173
.10.1115/1.483239
45.
Garo
,
R.
, and
Imas
,
L.
,
2012
, “
Hydrodynamic Performance of a Submerged Lifting Surface Operating at High Speed
,”
Proceedings of the 4th High Performance Yacht Design Conference
.
46.
Amromin
,
E. L.
,
Vaciliev
,
A. V.
, and
Syrkin
,
E. N.
,
1995
, “
Propeller Blade Cavitation Inception Prediction and Problems of Blade Geometry Optimization: Recent Research at the Krylov Shipbuilding Research Institute
,”
J. Ship Res.
,
39
, pp.
202
212
.
You do not currently have access to this content.