The fertilizer suction capability of a Venturi injector is dependent on the vacuum pressure in the throat portion. As the vacuum level drops below the saturation vapor pressure, the pressure decreases to a particular value corresponding to the maximum pressure difference (Δpmax) between inlet and outlet pressures, and critical cavitation is likely to occur, leading to an unstable suction flow rate and low fertilization uniformity. A new method of using strain gauges to detect cavitation in Venturi injectors was explored experimentally and verified numerically under various operating conditions. The standard deviation (SD) of the measured strain values and the simulated values of the vapor-phase volume fraction (Vf) were used to evaluate the influence of cavitation. The results showed that both the rate of increase (ηm) of the average SD and the average growth rate (AGR) of the simulated cavitation length reach relatively large values at the maximum pressure difference (Δpmax), where the measured suction flow rate simultaneously reaches a maximum. In addition, SD and Vf shared similar variation trends at pressure differences larger than the corresponding Δpmax under various conditions. This new cavitation detection method has been proved to be feasible and reliable. It helps to determine accurately the value of Δpmax at different inlet pressures and to ensure that the Venturi injector runs in a safe operating-pressure range.

References

References
1.
MWR,
2012
,
2011 Statistic Bulletin on China Water Activities
,
China Water Power Press
,
Beijing
(in Chinese).
2.
Bar-Yosef
,
B.
,
1999
,
Advances in Fertigation, Advances in Agronomy
,
Elsevier Academic
,
San Diego
, CA.
3.
Goldberg
,
D. G. B.
, and
Rimon
,
D.
,
1976
,
Drip Irrigation: Principles, Design and Agricultural Practice
.,
Drip Irrigation Scientific
,
New York
.
4.
Schwankl
,
L.
,
2001
,
Fertigation and Injection Systems, Drip Irrigation for Row Crops
,
New Mexico State University
,
Las Cruces, NM
.
5.
Kedrinskii
,
V. K.
,
1976
, “
Negative-Pressure Profile in Cavitation Zone at Underwater Explosion Near Free-Surface
,”
Acta Astronaut.
,
3
(
7–8
), pp.
623
632
.10.1016/0094-5765(76)90166-1
6.
Jin
,
Y. K.
,
Xia
,
C. H.
, and
Fang
,
B. L.
,
2006
, “
Research and Development of Venturi Fertilizer Applicator Series
,”
China Rural Water and Hydropower
,
5
, pp.
14
16
.
7.
Yan
,
H. J.
,
Chu
,
X. Y.
,
Wang
,
M.
, and
Wang
,
Z. Y.
,
2010
, “
Injection Performance of Venturi Injector in Micro-Irrigation System
,”
J. Drain. Irrig. Mach. Eng.
,
28
(
3
), pp.
251
255
.
8.
Barre
,
S.
,
Rolland
,
J.
,
Boitel
,
G.
,
Goncalves
,
E.
, and
Patella
,
R. F.
,
2009
, “
Experiments and Modeling of Cavitating Flows in Venturi: Attached Sheet Cavitation
,”
Eur. J. Mech. B/Fluids
,
28
(
3
), pp.
444
464
.10.1016/j.euromechflu.2008.09.001
9.
Ardiansyah
,
T.
,
Takahashi
,
M.
,
Asaba
,
M.
, and
Miura
,
K.
,
2011
, “
Cavitation Damage in Flowing Liquid Sodium Using Venturi Test Section
,”
J. Power Energy Syst.
,
5
(
1
), pp.
77
85
.10.1299/jpes.5.77
10.
Ĉudina
,
M.
,
2003
, “
Detection of Cavitation Phenomenon in a Centrifugal Pump Using Audible Sound
,”
Mech. Syst. Signal Pr.
,
17
(
6
), pp.
1335
1347
.10.1006/mssp.2002.1514
11.
Ĉudina
,
M.
, and
Prezelj
,
J.
,
2009
, “
Detection of Cavitation in Operation of Kinetic Pumps. Use of Discrete Frequency Tone in Audible Spectra
,”
Appl. Acoust.
,
70
(
4
), pp.
540
546
.10.1016/j.apacoust.2008.07.005
12.
Pu
,
Z. Q.
,
Zhang
,
W.
,
Shi
,
K. R.
, and
Wu
,
Y. L.
,
2005
, “
Research on Turbine Cavitation Testing Based on Wavelet Singularity Detection
,”
Proc. CSEE
,
25
(
8
), pp.
105
109
.
13.
Liu
,
Y.
,
He
,
Y. Y.
, and
Chen
,
D. R.
,
2009
, “
Wavelet Entropy Based Condition Test and Identification of Cavitation
,”
J. Mech. Strength
,
31
(
1
), pp.
19
23
.
14.
Al-Hashmi
,
S. A.
,
2009
, “
Statistical Analysis of Vibration Signals for Cavitation Detection
,”
IEEE Symposium on Industrial Electronics and Applications
, Kuala Lumpur, Malaysia.
15.
Yazici
,
B.
,
Tuncer
,
I. H.
, and
Ali Ak
,
M.
,
2007
, “
Numerical & Experimental Investigation of Flow Through a Cavitating Venturi
,”
3rd International Conference on Recent Advances in Space Technologies
, Istanbul, Turkey.
16.
Maekawa
,
A.
,
Shimizu
,
Y.
,
Suzuki
,
M.
, and
Fujita
,
K.
,
2005
, “
Experimental Study of Coupling Vibration Characteristics Between a Thin Cylindrical Water Storage Tank and Its Contained Liquid
,” Proceedings of the
ASME
Pressure Vessels and Piping Conference, Denver, CO, July 17–21, pp. 113–120.10.1115/PVP2005-71256
17.
Zhang
,
C.
,
Pettigrew
,
M. J.
, and
Mureithi
,
N. W.
,
2006
, “
Correlation Between Vibration Excitation Forces and the Dynamic Characteristics of Two-Phase Flow in a Rotated Triangular Tube Bundle
,”
Proceedings of the ASME Pressure Vessels and Piping Conference
, Vancouver, Canada, July 23–27, pp. 325–334.
18.
Inaba
,
K.
, and
Shepherd
,
J. E.
,
2010
, “
Dynamics of Cavitating Flow and Flexural Waves in Fluid-Filled Tubes Subject to Axial Impact
,” Proceedings of the
ASME
Pressure Vessels and Piping Conference, Bellevue, Washington, July 18–22, pp. 89–98.10.1115/PVP2010-25989
19.
Coutier-Delgosha
,
O.
,
Reboud
,
J. L.
, and
Delannoy
,
Y.
,
2003
, “
Numerical Simulation of the Unsteady Behaviour of Cavitating Flows
,”
Int. J. Numer. Methods Fluids
,
42
, pp.
527
548
.
20.
Dittakavi
,
N.
,
Chunekar
,
A.
, and
Frankel
,
S.
,
2010
, “
Large Eddy Simulation of Turbulent-Cavitation Interactions in a Venturi Nozzle
,”
ASME J. Fluids Eng.
,
132
(
12
), p.
121301
.10.1115/1.4001971
21.
Mejri
,
I.
,
Bakir
,
F.
,
Rey
,
R.
, and
Belamri
,
T.
,
2006
, “
Comparison of Computational Results Obtained From a Homogeneous Cavitation Model With Experimental Investigations of Three Inducers
,”
ASME J. Fluids Eng.
,
128
(
6
), pp.
1308
1323
.10.1115/1.2353265
22.
Nouri
,
N. M.
,
Moghimi
,
M.
, and
Mirsaeedi
,
S. M. H.
,
2010
, “
Large Eddy Simulation of Natural Cavitating Flows in Venturi-Type Sections
,”
J. Mech. Eng. Sci.
,
225
(
2
), pp.
369
381
.10.1243/09544062JMES2036
23.
Yan
,
H. J.
, and
Chu
,
X. Y.
,
2011
, “
Numerical Simulation for Influence of Throat Diameter on Venturi Injector Performance
,”
J. Drain. Irrig. Mach. Eng.
,
29
(
4
), pp.
359
363
.
24.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1972
,
Lectures in Mathematical Models of Turbulence
,
Academic Press
,
London
.
25.
Schnerr
,
G. H.
, and
Sauer
,
J.
,
2001
, “
Physical and Numerical Modeling of Unsteady Cavitation Dynamics
,”
Fourth International Conference on Multiphase Flow
, New Orleans, LA, May 27–June 1.
26.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.10.1115/1.1486223
27.
Philip
,
J.
,
Zwart
,
A. G. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
International Conference on Multiphase Flow
, Yokohama, Japan.
28.
Yuan
,
W.
,
Günter
,
J. S.
, and
Schnerr
,
H.
,
2001
, “
Modeling and Computation of Unsteady Cavitation Flows in Injection Nozzles
,”
Méc. Ind.
,
2
(
5
), pp.
383
394
.10.1016/S1296-2139(01)01120-4
29.
Kozubkova
,
M.
, and
Rautova
,
J.
,
2009
, “
Cavitation Modeling of the Flow in Laval Nozzle
,”
3rd IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems
, Czech Republic.
30.
Sayyaadi
,
H.
,
2010
, “
Instability of the Cavitating Flow in a Venturi Reactor
,”
Fluid Dyn. Res.
,
42
(
5
), p.
055503
.10.1088/0169-5983/42/5/055503
You do not currently have access to this content.