This paper focuses on under-expanded gaseous flow at a straight micro-tube exit. The pitot total pressure of gas flow (jet) in the downstream region from a straight micro-tube exit was measured by a total pressure pitot tube to accumulate data for validation of numerical results. A micro-tube of 495μm in diameter and 56.3 mm in length and a total pressure pitot tube of 100 μm in outer diameter were used. The pitot total pressure was measured at intervals of 0.1 mm in both the flow and radial directions. The measurement was done for the mass flow rates of 9.71 × 10−5kg/s and 1.46 × 10−4kg/s. The data were accumulated for validation of the numerical results to reveal the characteristics of the under-expanded gas flow at the exit of a micro-tube. Comparisons were conducted for numerical results of corresponding cases and a slight discrepancy can be seen between numerical and experimentally measured pitot total pressures.

References

References
1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(5), pp.
126
129
.10.1109/EDL.1981.25367
2.
Wu
,
P.
, and
Little
,
W. A.
,
1983
, “
Measurement of Friction Factors for the Flow of Gases in Very Fine Channels Used for Microminiature Joule-Thompson Refrigerators
,”
Cyrogenics
,
23
, pp.
273
277
.10.1016/0011-2275(83)90150-9
3.
Asako
,
Y.
,
Pi
,
T.
,
Turner
,
S.
, and
Faghri
,
M.
,
2003
, “
Effect of Compressibility on Gaseous Flows in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
46
, pp.
3041
3050
.10.1016/S0017-9310(03)00074-7
4.
Asako
,
Y.
,
Nakayama
,
K.
, and
Shinozuka
,
T.
,
2005
, “
Effect of Compressibility on Gaseous Flows in a Micro-Tube
,”
Int. J. Heat Mass Transfer
,
48
, pp.
4985
4994
.10.1016/j.ijheatmasstransfer.2005.05.039
5.
Morini
,
G. L.
,
Lorenzini
,
M.
,
Colin
,
S.
, and
Geoffroy
,
S.
,
2007
, “
Experimental Analysis of Pressure Drop and Laminar to Turbulent Transition for Gas Flows in Smooth Microtubes
,”
Heat Transfer Eng.
,
28
(
8–9
), pp.
670
679
.10.1080/01457630701326308
6.
Morini
,
G. L.
,
Lorenzini
,
M.
,
Salvigni
,
S.
, and
Spiga
,
M.
,
2009
, “
Analysis of Laminar-to-Turbulent Transition for Isothermal Gas Flows in Microchannels
,”
Microfluid NanoFluid
,
7
, pp.
181
190
.10.1007/s10404-008-0369-2
7.
Celata
,
G. P.
,
Lorenzini
,
M.
,
Morini
,
G. L.
, and
Zummo
,
G.
,
2009
, “
Friction Factor in Micropipe Gas Flow Under Laminar, Transition and Turbulent Flow Regime
,”
Int. J. Heat Fluid Flow
,
30
, pp.
814
822
.10.1016/j.ijheatfluidflow.2009.02.015
8.
Murakami
,
S.
, and
Asako
,
Y.
,
2011
, “
Local Friction Factor of Compressible Laminar or Turbulent Flow in Micro-Tubes
,”
ASME 9th International Conference on Nanochannels, Microchannels, and Minichannels
, Edmonton, Canada, June 19–22,
ASME
Paper No. ICNMM2011-58036. 10.1115/ICNMM2011-58036
9.
Wu
,
P.
, and
Little
,
W. A.
,
1984
, “
Measurement of the Heat Transfer Characteristics of Gas Flow in Fine Channel Heat Exchangers Used for Microminiature Refrigerators
,”
Cryogenics
,
24
, pp.
415
420
.10.1016/0011-2275(84)90015-8
10.
Asako
,
Y.
, and
Toriyama
,
H.
,
2005
, “
Heat Transfer Gaseous Flow in Microchannels
,”
Microscale Thermophys. Eng.
,
9
, pp.
15
31
.10.1080/10893950590913279
11.
Yang
,
C.
,
Chen
,
C.
,
Lin
,
T.
, and
Kandlikar
,
S. G.
,
2012
, “
Heat Transfer and Friction Characteristics of Air Flow in Microtubes
,”
Exp. Thermal Fluid Sci.
,
37
, pp.
12
18
.10.1016/j.expthermflusci.2011.09.003
12.
Shapiro
,
A. H.
,
1953
,
The Dynamics and Thermodynamics of Compressible Fluid Flow
, Vols. 1 and 2, Wiley, New York.
13.
Kubo
,
K.
,
Miyazato
,
Y.
, and
Matsuo
,
K.
,
2010
, “
Study of Choked Flows Through a Convergent Nozzle
,”
J. Therm. Sci.
,
19
, pp.
193
197
.10.1007/s11630-010-0193-3
14.
Hong
,
C.
,
Yoshida
,
Y.
,
Asako
,
Y.
, and
Suzuki
,
K.
,
2010
, “
Flow Structure of Supersonic Jet from a Straight Micro-Tube
,”
ASME 8th International Conference on Nanochannels, Microchannels, and Minichannels
, Montreal, Canada, August 1–5,
ASME
Paper No. FEDSM-ICNMM2010-30622. 10.1115/FEDSM-ICNMM2010-30622
15.
Scroggs
,
S. D.
, and
Settles
,
G. S.
,
1996
, “
An Experimental Study of Supersonic Microjets
,”
Exp. Fluids
,
21
, pp.
401
409
.10.1007/BF00189042
16.
Phalnicar
,
K. A.
,
Kumar
,
R.
, and
Alvi
,
F. S.
,
2008
, “
Experiments on Free and Impinging Microjets
,”
Exp. Fluids
,
44
, pp.
819
830
.10.1007/s00348-007-0438-4
17.
Aniskin
, V
.M.
,
Mironov
,
S. G.
, and
Maslov
,
A. A.
,
2012
, “
The Structure of Supersonic Two-Dimensional and Axisymmetric Microjets
,”
Int. J. Microscale Nanoscale Therm. Fluid Transport Phenomena
,
3
, pp.
49
59
.
18.
Aniskin
, V
.M.
,
Mironov
,
S. G.
, and
Maslov
,
A. A.
,
2013
, “
Investigation of the Structure of Supersonic Nitrogen Microjets
,”
Microfluidics Nanofluidics
,
14
, pp.
605
614
.10.1007/s10404-012-1079-3
19.
Saad
,
M. A.
,
1985
,
Compressible Fluid Flow
,
Prentice-Hall
,
New York
.
20.
Eirich
,
F. R.
,
1960
,
Rheology
, Vol.
3
,
Academic Press
,
New York
, pp.
17
80
.
21.
Lam
,
C. K. G.
, and
Bremhorst
,
K.
,
1981
, “
A Modified Form of the k-ƒÃ Model for Predicting Wall Turbulence
,”
J. Fluid Eng.
,
103
, pp.
456
460
.10.1115/1.3240815
22.
Patel
, V
.C.
,
Rodi
,
W.
, and
Scheuerer
,
G.
,
1984
, “
Turbulence Models for Near-Wall and Low Reynolds Number Flows: A Review
,”
AIAA J.
,
23
(9), pp.
1308
1319
.10.2514/3.9086
23.
Karki
,
K. C.
,
1986
, “
A Calculation Procedure for Viscous Flows at All Speeds in Complex Geometries
,” Ph. D. thesis, University of Minnesota, Minneapolis, Minneapolis, MN.
24.
Amsden
,
A. A.
,
Rupell
,
H. M.
, and
Hire
,
C. W.
,
1980
, “
SALE A Simplified ALE Computer Program of Fluid Flow at All Speeds
,” Los Alamos Scientific Lab, Report No. LA-8095.
You do not currently have access to this content.