The combined law of the wall and wake, with the inclusion of the “roughness depression function” for the inner law in the “Log” region, is used as the inner coordinates' velocity profile in the integral form of the x momentum equation to solve for the local skin friction coefficient. The “equivalent sand grain roughness” concept is employed in the roughness depression function in the solution. Calculations are started at the beginning of roughness on a surface, as opposed to starting them using the measured experimental values at the first data point, when making comparisons of predictions with data sets. The dependence of the velocity wake strength on both pressure gradient and momentum thickness Reynolds number are taken into account. Comparisons of the prediction with experimental skin friction data, from the literature, have been made for some adverse, zero, and favorable (accelerating flows) pressure gradients. Predictions of the shape factor, roughness Reynolds number, and momentum thickness Reynolds number and comparisons with data are also made for some cases. In addition, some comparisons with the predictions of earlier investigators have also been made.

References

References
1.
Schlichting
,
H.
,
1960
,
Boundary Layer Theory
,
4th ed.
,
McGraw-Hill
,
New York
.
2.
Dvorak
,
F. A.
,
1969
, “
Calculation of Turburlent Boundary Layers on Rough Surfaces in Pressure Gradient
AIAA J.
,
7
, pp.
1752
1759
.10.2514/3.5386
3.
Taylor
,
R. P.
,
Coleman
,
H. W.
, and
Hodge
,
B. K.
,
1985
, “
Prediction of Turbulent Rough Wall Skin Friction Using a Discrete Element Approach
ASME J. Fluids Eng.
,
107
, pp.
251
257
.10.1115/1.3242469
4.
Coleman
,
H. W.
,
Hodge
,
B. K.
, and
Taylor
,
R. P.
,
1984
, “
A Re-Evaluation of Schlichting's Surface Roughness Experiment
,”
ASME J. Fluids Eng.
,
106
, pp.
60
65
.10.1115/1.3242406
5.
Cebeci
,
T.
, and
Chang
,
K. C.
,
1978
, “
Calculation of Incompressible Rough Wall Boundary Layer Flows
,”
AIAA J.
,
16
, pp.
730
735
.10.2514/3.7571
6.
Sigal
,
A.
, and
Danberg
,
J. E.
,
1990
, “
New Correlation of Roughness Density Effect on the Turbulent Boundary Layer
,”
AIAA J.
,
28
, pp.
554
556
.10.2514/3.10427
7.
Bons
,
J.
,
2005
, “
A Critical Assessment of Reynolds Analogy for Turbine Flows
,”
ASME J. Heat Transfer
,
127
, pp.
472
485
.10.1115/1.1861919
8.
Flack
,
K. A.
, and
Schultz
,
M. P.
,
2010
, “
Review of Hydraulic Roughness Scales in the Fully Rough Regime
,”
ASME J. Fluids Eng.
,
132
(4), p.
041203
.10.1115/1.4001492
9.
Bergstrom
,
D. J.
,
Akinade
,
O. G.
, and
Tachie
,
M. F.
,
2005
, “
Skin Friction Correlation for Smooth and Rough Wall Turbulent Boundary Layers
,”
ASME J. Fluids Eng.
,
127
, pp.
1146
1153
.10.1115/1.2073288
10.
Scraggs
,
W. F.
,
Taylor
,
R. P.
, and
Coleman
,
A. W.
,
1988
, “
Measurement and Prediction of Rough Wall Effects on Friction Factor–Uniform Roughness Results
,”
ASME J. Fluids Eng.
,
110
, pp.
385
391
.10.1115/1.3243568
11.
Taylor
,
R. P.
,
Scraggs
,
W. F.
, and
Coleman
,
H. W.
,
1988
, “
Measurement and Prediction of the Effects of Nonuniform Surface Roughness on Turbulent Flow Friction Coefficients
,”
ASME J. Fluids Eng.
,
110
, pp.
380
384
.10.1115/1.3243567
12.
Avci
,
A.
, and
Karagoz
,
I.
,
2009
, “
A Novel Explicit Equation for Friction Factor in Smooth and Rough Pipes
,”
ASME J. Fluids Eng.
,
131
(6), p.
061203
.10.1115/1.3129132
13.
Tani
,
I.
,
1987
, “
Turbulent Boundary Layer Development Over Rough Surfaces
,”
Perspectives in Turbulence Studies
,
H. W.
Meier
and
P.
Bradshaw
, eds.,
Springer-Verlag
,
Berlin
, pp.
223
249
.
14.
Stel
,
H.
,
Franco
,
A. T.
,
Junqueira
,
S. L. M.
,
Mendes
,
R.
,
Goncalves
,
M. A. L.
, and
Morales
,
R. E. M.
,
2012
, “
Turbulent Flow in D-Type Corrugated Pipes: Flow Pattern and Friction Factor
,”
ASME J. Fluids Eng.
,
134
(12), p.
121202
.10.1115/1.4007899
15.
Mills
,
A. F.
, and
Hang
,
Xu
,
1983
, “
On the Skin Friction Coefficient for a Fully Rough Flat Plate
,”
ASME J. Fluids Eng.
,
105
, pp.
364
365
.10.1115/1.3241008
16.
Coleman
,
H. W.
,
1976
, “
Momentum and Energy Transport in the Accelerated Fully Rough Turbulent Boundary Layer
,” Ph.D. thesis, Department of Mechanical Engineering, Stanford University, Stanford, CA.
17.
Christoph
,
G. H.
, and
Pletcher
,
R. H.
,
1983
, “
Prediction of Rough Wall Skin Friction and Heat Transfer
,”
AIAA J.
,
21
(
4
), pp.
509
515
.10.2514/3.8107
18.
Hosni
,
M. H.
,
Coleman
,
H. W.
, and
Taylor
,
R. P.
,
1993
, “
Measurement and Calculation of Fluid Dynamic Characteristics of Rough-Wall Turbulent Boundary Layer Flows
,”
ASME J. Fluids Eng.
,
115
, pp.
383
388
.10.1115/1.2910150
19.
Sucec
,
J.
,
1995
, “
A Simple, Accurate Integral Solution for Accelerating Turbulent Boundary Layers With Transpiration
,”
ASME J. Fluids Eng.
,
117
, pp.
535
538
.10.1115/1.2817297
20.
Raupach
,
M. R.
,
Antonia
,
R. A.
, and
Rajagopalan
,
S.
,
1991
, “
Rough Wall Turbulent Boundary Layers
,”
Appl. Mech. Rev.
,
44
(
1
), pp.
1
25
.10.1115/1.3119492
21.
McClain
,
S. T.
,
Collins
,
S. P.
,
Hodge
,
B. K.
, and
Bons
,
J. P.
,
2006
, “
The Importance of the Mean Elevation in Predicting Skin Friction for Flow Over Closely Packed Surface Roughness
,”
ASME J. Fluids Eng.
,
128
, pp.
579
586
.10.1115/1.2175164
22.
Sucec
,
J.
,
2009
, “
An Integral Solution for Heat Transfer in Accelerating Turbulent Boundary Layers
,”
ASME J. Heat Transfer
,
131
(11), p.
111702
.10.1115/1.3154649
23.
Oljaca
,
M.
, and
Sucec
,
J.
,
1997
, “
Prediction of Transpired Turbulent Boundary Layers with Arbitrary Pressure Gradients
,”
ASME J. Fluids Eng.
,
119
, pp.
526
532
.10.1115/1.2819276
24.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
,
2005
,
Convection Heat and Mass Transfer
,
4th ed.
,
McGraw-Hill
,
New York
.
25.
Young
,
A. D.
,
1989
,
Boundary Layers
,
AIAA Education Series
,
Washington, DC
.
26.
Cebeci
,
T.
, and
Bradshaw
,
P.
,
1984
,
Physical and Computational Aspects of Convective Heat Transfer
,
Springer-Verlag
,
New York
, p.
188
.
27.
White
,
F. M.
,
1991
,
Viscous Fluid Flow
,
2nd ed.
,
McGraw-Hill
,
New York
.
28.
Schetz
,
J. A.
,
1984
,
Foundations of Boundary Layer Theory for Momentum, Heat, and Mass Transfer
,
Prentice-Hall Inc.
,
Englewood Cliffs, NJ
, p.
150
.
29.
Ralston
,
A.
, and
Rabinowitz
,
P.
,
1978
,
A First Course in Numerical Analysis
,
2nd ed.
,
McGraw-Hill
,
New York
, pp.
217
222
.
30.
Perry
,
A. E.
, and
Joubert
,
P. N.
,
1963
, “
Rough Wall Boundary Layers in Adverse Pressure Gradients
,”
J. Fluid Mech.
,
17
, pp.
193
211
.10.1017/S0022112063001245
31.
Moffat
,
R. J.
,
Healzer
,
J. M.
, and
Kays
,
W. M.
,
1978
, “
Experimental Heat Transfer Behavior of a Turbulent Boundary Layer on a Rough Surface With Blowing
,”
ASME J. Heat Transfer
,
100
, pp.
134
142
.10.1115/1.3450487
32.
Liu
,
C. K.
,
Cline
,
S. J.
, and
Johnston
,
J. P.
,
1966
, “
An Experimental Study of Turbulent Boundary Layers on Rough Wall
,” Department of Mechanical Engineering, Stanford University, Report No. Md 15.
33.
Cebeci
,
T.
, and
Smith
,
A. M. O.
,
1974
,
Analysis of Turbulent Boundary Layers
,
Academic Press
,
New York
.
You do not currently have access to this content.