This article describes the development of a reduced order model (ROM) based on residual minimization for a generic power-law fluid. The objective of the work is to generate a methodology that allows for the fast and accurate computation of polymeric flow fields in a multiparameter space. It is shown that the ROM allows for the computation of the flow field in a few seconds, as compared with the use of computational fluid dynamics (CFD) methods in which the central processing unit (CPU) time is on the order of hours. The model fluid used in the study is a polymeric fluid characterized by both its power-law consistency index m and its power-law index n. Regarding the ROM development, the main difference between this case and the case of a Newtonian fluid is the order of the nonlinear terms in the viscous stress tensor: In the case of the polymeric fluid these terms are highly nonlinear while they are linear when a Newtonian fluid is considered. After the method is validated and its robustness studied with regard to several parameters, an application case is presented that could be representative of some industrial situations.

References

References
1.
Lieu
,
T.
,
Farhat
,
C.
, and
Lesoinne
,
M.
,
2006
, “
Reduced-Order Fluid/Structure Modeling of a Complete Aircraft Configuration
,”
Comput. Meth. Appl. Mech. Eng.
,
195
, pp.
5730
5742
.10.1016/j.cma.2005.08.026
2.
Cizmas
,
P. G. A.
,
Richardson
,
B. R.
,
Brenner
,
T. A.
,
O'Brien
,
T. J.
, and
Breault
,
R. W.
,
2008
, “
Acceleration Techniques for Reduced-Order Models Based on Proper Orthogonal Decomposition
,”
J. Comput. Phys.
,
227
, pp.
7791
7812
.10.1016/j.jcp.2008.04.036
3.
De Lucas
,
S.
,
Vega
,
J. M.
, and
Velazquez
,
A.
,
2011
, “
Aeronautic Conceptual Design Optimization Method Based on High-Order Singular Value Decomposition
,”
AIAA J.
,
49
, pp.
2713
2725
.10.2514/1.J051133
4.
Burkardt
,
J.
,
Gunzburger
,
M.
, and
Lee
,
H. C.
,
2006
, “
POD and CVT Based Reduced Order Modelling of Navier–Stokes Flows
,”
Comput. Meth. Appl. Mech. Eng.
,
196
, pp.
337
355
.10.1016/j.cma.2006.04.004
5.
Sirisup
,
S.
, and
Karniadakis
,
G. E.
,
2005
, “
Stability and Accuracy of Periodic Flow Solutions Obtained by POD-Penalty Method
,”
Physica D
,
202
, pp.
218
237
.10.1016/j.physd.2005.02.006
6.
Sirisup
,
S.
, and
Karniadakis
,
G. E.
,
2004
, “
A Spectral Viscosity Method for Correcting the Long Term Behaviour of POD Models
,”
J. Comput. Phys.
,
194
, pp.
92
116
.10.1016/j.jcp.2003.08.021
7.
Galletti
,
B.
,
Bruneau
,
C. H.
,
Zannetti
,
C.
, and
Lollo
,
A.
,
2004
, “
Low-Order Modelling of Laminar Flow Regimes Past a Confined Square Cylinder
,”
J. Fluid Mech.
,
503
, pp.
161
170
.10.1017/S0022112004007906
8.
Couplet
,
M.
,
Basdevant
,
C.
, and
Sagaut
,
P.
,
2003
, “
Calibrated Reduced-Order POD-Galerkin System for Fluid Flow Modeling
,”
J. Comput. Phys.
,
207
, pp.
192
220
.
9.
Alonso
,
D.
,
Velazquez
,
A.
, and
Vega
,
J. M.
,
2009
, “
Robust Reduced Order Modeling of Heat Transfer in a Back Step Flow
,”
Int. J. Heat Mass Transfer
,
52
, pp.
1149
1157
.10.1016/j.ijheatmasstransfer.2008.09.011
10.
Alonso
,
D.
,
Velazquez
,
A.
, and
Vega
,
J. M.
,
2009
, “
A Method to Generate Computationally Efficient Reduced Order Models
,”
Comput. Meth. Appl. Mech. Eng.
,
198
, pp.
2683
2691
.10.1016/j.cma.2009.03.012
11.
Bache
,
E.
,
Vega
,
J. M.
, and
Velazquez
,
A.
,
2010
, “
Model Reduction in the Back Step Fluid-Thermal Problem With Variable Geometry
,”
Int. J. Therm. Sci.
,
49
, pp.
2376
2384
.10.1016/j.ijthermalsci.2010.07.013
12.
Boukouvala
,
F.
,
Gao
,
Y.
,
Muzzio
,
F.
, and
Ierapetritou
,
M. G.
,
2013
, “
Reduced Order Discrete Element Method Modeling
,”
Chem. Eng. Sci.
,
95
, pp.
12
26
.10.1016/j.ces.2013.01.053
13.
Chinesta
,
F.
,
Ammar
,
A.
,
Leygue
,
A.
, and
Keunings
,
R.
,
2011
, “
An Overview of the Proper Generalized Decomposition With Applications in Computational Rheology
,”
J. Non-Newtonian Fluid Mech.
,
166
, pp.
578
592
.10.1016/j.jnnfm.2010.12.012
14.
Ammar
,
A.
,
Pruliere
,
E.
,
Chinesta
,
F.
, and
Laso
M.
,
2009
, “
Reduced Numerical Modeling of Flows Involving Liquid-Crystalline Polymers
,”
J. Non-Newton. Fluid Mech.
,
160
, pp.
140
156
.10.1016/j.jnnfm.2009.03.013
15.
Alonso
,
D.
,
Vega
,
J. M.
, and
Velazquez
,
A.
,
2010
, “
Reduced-Order Model for Viscous Aerodynamic Flow Past an Airfoil
,”
AIAA J.
,
48
, pp.
1946
1958
.10.2514/1.J050153
16.
Bache
,
E.
,
Alonso
,
D.
,
Velazquez
,
A.
, and
Vega
,
J. M.
,
2012
, “
A Computationally Efficient Reduced Order Model to Generate Multi-Parameter Fluid-Thermal Databases
,”
Int. J. Therm. Sci.
,
52
, pp.
145
153
.10.1016/j.ijthermalsci.2011.08.022
17.
Rodd
,
L. E.
,
Cooper-White
,
J. J.
,
Boger
,
D. V.
, and
McKinley
,
G. H.
,
2007
, “
Role of the Elasticity Number in the Entry Flow of Dilute Polymer Solutions in Micro-Fabricated Contraction Geometries
,”
J. Non-Newton. Fluid Mech.
,
143
, pp.
170
191
.10.1016/j.jnnfm.2007.02.006
18.
Poole
,
R. J.
, and
Escudier
,
M. P.
,
2003
, “
Turbulent Flow of Non-Newtonian Liquids Over a Backward-Facing Step, Part II. Viscoelastic and Shear-Thinning Liquids
,”
J. Non-Newton. Fluid. Mech.
,
109
, pp.
193
230
.10.1016/S0377-0257(02)00168-4
19.
Nadeem
,
S.
,
Akram
,
S.
,
Hayat
,
T.
, and
Hendi
,
A. A.
,
2012
, “
Peristaltic Flow of a Carreau Fluid in a Rectangular Duct
,”
ASME J. Fluids Eng.
,
134
(
4
), p.
041201
.10.1115/1.4005727
20.
Yapici
,
K.
,
Karasozen
,
B.
, and
Uludag
,
Y.
,
2012
, “
Numerical Analysis of Viscoelastic Fluids in Steady Pressure-Driven Channel Flow
,”
ASME J. Fluids Eng.
,
134
(
5
), p.
051206
.10.1115/1.4006696
21.
Dapra
,
I.
, and
Scarpi
,
G.
,
2011
, “
Pulsatile Poiseuille Flow of a Viscoplastic Fluid in the Gap Between Coaxial Cylinders
,”
ASME J. Fluids Eng.
,
133
(
8
), p.
081203
.10.1115/1.4003926
22.
Tripathi
,
D.
,
2011
, “
Numerical Study on Creeping Flow of Burgers's Fluids Through a Peristaltic Tube
,”
ASME J. Fluids Eng.
,
133
(
12
), p.
121104
.10.1115/1.4005316
23.
Bird
,
R. B.
,
Amstrong
,
R. G.
, and
Assager
,
O.
,
1987
,
Dynamics of Polymeric Liquids
,
John Wiley and Sons
, Hoboken, NJ.
24.
Mendez
,
B.
, and
Velazquez
,
A.
,
2004
, “
Finite Point Solver for the Simulation of 2-D Laminar Incompressible Unsteady Flow
,”
Comput. Meth. Appl. Mech. Eng.
,
193
, pp.
825
848
.10.1016/j.cma.2003.11.010
25.
Velazquez
,
A.
,
Arias
,
J. R.
, and
Mendez
,
B.
,
2008
, “
Laminar Heat Transfer Enhancement Downstream of a Backward Facing Step by Using a Pulsating Flow
,”
Int. J. Heat Mass Transfer
,
51
, pp.
2075
2089
.10.1016/j.ijheatmasstransfer.2007.06.009
26.
Velazquez
,
A.
,
Arias
,
J. R.
, and
Montanes
,
J. L.
,
2009
, “
Pulsating Flow and Convective Heat Transfer in a Cavity With Inlet and Outlet Sections
,”
Int. J. Heat Mass Transfer
,
52
, pp.
647
654
.10.1016/j.ijheatmasstransfer.2008.07.020
27.
Tannehill
,
J. C.
,
Anderson
,
D. A.
, and
Fletcher
,
R. H.
,
1997
,
Computational Fluid Mechanics and Heat Transfer
,
Taylor & Francis
,
Philadelphia
, PA.
28.
Smith
,
T. R.
,
Moehlis
,
J.
, and
Holmes
,
P.
,
2005
, “
Low-Dimensional Modelling of Turbulence Using the Proper Orthogonal Decomposition: A Tutorial
,”
Nonlinear Dynam.
41
, pp.
275
307
.10.1007/s11071-005-2823-y
29.
Fletcher
,
R.
,
2007
,
Practical Methods of Optimization
,
John Wiley & Sons
, Hoboken, NJ.
You do not currently have access to this content.