Several examples illustrating the energy balance associated with a mixing process at the interface of a planar dynamical model describing two-phase perfect fluid circulating around a circle with a sufficiently large radius within a central gravitational field are presented. The model is associated with the spatial and temporal structure of the zonally averaged global-scale atmospheric longitudinal circulation around the Earth. The fluid is supposed to be irrotational and pressure on a outer layer is constant. It is postulated that the total fluid depth is small compared to the radius of the circle and the gravity vector is directed to the center of the circle. Under these assumptions, this problem can be associated with a spatial and temporal structure of the zonally averaged global-scale atmospheric longitudinal circulation around equatorial plane. The model is the subject to the rigid lid approximation to the external boundary conditions for the outer fluid layer. One of the novelties in this work is the derivation of the nonlinear shallow water model by means of the average velocity. This introduction simplifies essentially further potential studies of mixing criteria associated with nonlinear mathematical models representing shallow water equations.

References

References
1.
Lions
,
J. L.
,
Temam
,
R.
, and
Wang
,
S.
,
1992
, “
New Formulation of the Primitive Equations of Atmosphere and Applications
,”
Nonlinearity
,
5
, pp.
237
288
.10.1088/0951-7715/5/2/001
2.
Ibragimov
,
R.
,
Pelinovsky
,
D.
,
2008
, “
Incompressible Viscous Fluid Flows in a Thin Spherical Shell
,”
J. Math. Fluid Mech.
,
11
, pp.
60
90
.10.1007/s00021-007-0248-8
3.
Ibragimov
,
R.
,
2011
, “
Nonlinear Viscous Fluid Patterns in a Thin Rotating Spherical Domain and Applications
,”
Phys. Fluids
23
, p. 123102.10.1063/1.3665132
4.
Kukharkin
,
N.
, and
Orszag
,
S. A.
,
1996
, “
Generation and Structure of Rossby Vortices in Rotating Fluids
,”
Phys. Rev. E
,
54
(
5
), pp.
4524
4527
.10.1103/PhysRevE.54.R4524
5.
Ibragimov
,
R.
,
2008
, “
Generation of Internal Tides by an Oscillating Background Flow Along a Corrugated Slope
,”
Phys. Scr.
,
78
, p. 065801.10.1088/0031-8949/78/06/065801
6.
Ibragimov
,
R.
,
2010
, “
Effects of Rotation on Self-Resonant Internal Gravity Waves in the Ocean
.”
Ocean Modell.
,
31
, pp.
80
87
.10.1016/j.ocemod.2009.10.003
7.
Resnick
,
I. G.
,
Martin
,
D. D.
, and
Larsen
L. D.
,
1990
, “
Evaluation of Need for Detection of Surface Biological Agent Contamination. Dugway Proving Ground, Life Sciences Division
,” US Dept of the Army; 1-35. Publication No. DPG-FR-90-711.
8.
Kulkarni
,
S. D.
,
Deaver
,
M. W.
,
Pardyjak
,
E. R.
,
Minor
,
M. A.
, and
Hollerbach
,
J. M.
,
2011
, “
Elements of a Novel Atmospheric Flow Simulator
,”
ASME J. Fluids Eng.
,
133
(
12
), p. 121402.10.1115/1.4005345
9.
Appenzeller
,
C. H.
,
Davies
,
C. H.
, and
Norton
,
W. A.
,
1996
, “
Fragmentation of Stratospheric Intrusions
,”
J. Geophys. Res.
,
101
, pp.
1435
1456
.10.1029/95JD02674
10.
Ibragimov
,
R.
, and
Yilmaz
,
N.
,
2011
, “
Experimental Mixing Parameterization due to Multiphase Fluid-Structure Interactions
,”
Mech. Res. Commun.
,
38
, pp.
261
266
.10.1016/j.mechrescom.2011.02.002
11.
Esler
,
J. G.
, and
Polvani
,
L. M.
,
2003
, “
Kelvin-Helmholtz Instability of Potential Vorticity Layers: A Route to Mixing
,”
J. Atmos. Sci.
,
61
, pp.
1392
1405
.10.1175/1520-0469(2004)061<1392:KIOPVL>2.0.CO;2
12.
Marzeion
,
B.
,
Levermann
,
A.
, and
Mignot
,
J.
,
2007
, “
The Role of Stratification-Dependent Mixing for the Stability of the Atlantic Overturning in a Global Climate Model
,”
J. Phys. Oceanography
,
37
, pp.
2672
2681
.10.1175/2007JPO3641.1
13.
Zolesi
,
B.
, and
Cander
,
L. R.
,
2003
, “
Effects of the Upper Atmosphere on Terrestrial and Earth-Space Communications
,”
IEE Conf. Proc.
No. 491, Vol. 2, pp.
565
568
.
14.
Cheney
,
M.
,
2008
, “
The 2008 NSF-CBMS Conference on Inverse Scattering for Radar Imaging
,” private communication.
15.
Gregg
,
M. C.
,
1987
, “
Diapicnal Mixing in a Thermocline. A Review
,”
J. Geophys. Res.
,
92
, pp.
5249
5286
.10.1029/JC092iC05p05249
16.
Peters
,
H.
,
Gregg
,
M. C.
, and
Toole
,
J.
,
1989
, “
Meridianal Variability of Turbulence Through the Equatorial Undercurrent
,”
J. Geophys. Res.
,
94
, pp.
18003
18009
.10.1029/JC094iC12p18003
17.
Ibragimov
,
R.
, and
Dameron
,
M.
,
2012
, “
Spinning Phenomena and Energetics of Spherically Pulsating Patterns in Stratified Fluids
,”
Phys. Scrip.
,
84
, p. 015402.10.1088/0031-8949/84/01/015402
18.
Blinova
,
E. N.
,
1943
, “
A Hydrodynamical Theory of Pressure and Temperature Waves and of Centers of Atmospheric Action
,”
Dokl. Acad. Nauk
,
39
, pp.
257
283
.
19.
Blinova
,
E. N.
,
1948
, “
A Method of Solution of the Nonlinear Problem of Atmospheric Motions on a Planetary Scale
,”
Dokl. Acad. Nauk.
,
110
, pp.
975
1024
.
20.
Ibragimov
,
R.
,
2001
, “
On the Tidal Motion Around the Earth Complicated by the Circular Geometry of the Ocean's Shape Without Coriolis Forces
,”
Mathematical Physics, Analysis and Geometry
,
Kluwer
, Dordrecht, The Netherlands, Vol.
4
, pp.
51
63
.
21.
Ibragimov
,
R.
,
2010
, “
Free Boundary Effects on Stability of Two Phase Plannar Fluid Motion in Annulus: Migration of the Stable Mode
,”
Commun. Nonlinear Sci. Numer. Sim.
,
15
(
9
), pp.
2361
2374
.10.1016/j.cnsns.2009.09.034
22.
Iftimie
,
D.
, and
Raugel
,
G.
,
2001
, “
Some Results on the NS Equations in Thin Three-Dimensional Domains
,”
J. Differ. Eq.
,
169
(2), pp. 281–331.
23.
Weijer
,
W.
,
Vivier
,
F.
,
Gille
,
S. T.
, and
Dijkstra
,
H.
,
2007
, “
Multiple Oscillatory Modes of the Argentine Basin. Part II: The Spectral Origin of Basin Modes
,”
J. Phys. Oceanography
,
37
, pp.
2869
–2881.10.1175/2007JPO3688.1
24.
Summerhayes
,
C. P.
, and
Thorpe
,
S. A.
,
1996
,
Oceanography: An Illustrative Guide
,”
Wiley
,
New York
.
25.
Bachelor
,
G. K.
,
1967
,
An Introduction to Fluid Dynamics
,”
Cambridge University Press
,
Cambridge, UK
.
26.
Herrmann
,
E.
,
1986
, “
The Motions of the Atmosphere and Especially its Waves
,”
Bull. Am. Math. Soc.
2
, pp.
285
315
.10.1090/S0002-9904-1896-00349-9
27.
Ibragimov
,
R.
,
2000
, “
Stationary Surface Waves on a Circular Liquid Layer With Constant Gravity
,”
Quaestiones Mathematicae
,
23
, pp
1
12
.10.2989/16073600009485952
28.
Scinocca
,
J. F.
,
1995
, “
The Mixing of Mass and Momentum by Kelvin-Helmholtz Billows
,”
J. Atmos. Sci.
,
52
, pp.
2509
2530
.10.1175/1520-0469(1995)052<2509:TMOMAM>2.0.CO;2
29.
Ibragimov
,
R.
, and
Akinlar
,
M.
,
2010
, “
Stability and Dissipation Modeling of Oceanic Internal Gravity Waves
,”
Current Development in Oceanography
,
1
(
2
), pp.
85
128
.
30.
Cho
,
J. Y.
,
1999
, “
Observations of Convective and Dynamical Instabilities in Tropopause Folds and Their Contribution to Stratosphere-Tropopause Exchange
,”
J. Geophys. Res.
,
104
, pp.
549
568
.10.1029/1998JA900052
31.
Juckes
,
M. N.
,
1995
, “
Instability of Surface and Upper Tropospheric Shear Lines
,”
J. Atmos. Sci.
,
52
, pp.
3247
3262
.10.1175/1520-0469(1995)052<3247:IOSAUT>2.0.CO;2
32.
McCreary
,
J. P.
,
1985
, “
Modeling Equatorial Ocean Circulation
,”
Ann. Rev. Fluid Mech.
,
17
, pp.
359
409
.10.1146/annurev.fl.17.010185.002043
33.
Ibragimov
,
R.
,
Jefferson
,
G.
, and
Carminati
,
J.
,
2013
, “
Invariant and Approximately Invariant Solutions of Non-Linear Internal Gravity Waves Forming a Column of Stratified Fluid Affected by the Earth's Rotation
,”
Int. J. Non-Linear Mech.
,
51
, pp.
28
44
.10.1016/j.ijnonlinmec.2012.12.001
34.
Smyth
,
W. D.
, and
Moum
,
J. N.
,
2002
, “
Shear Instability and Gravity Wave Saturation in an Asymmetrically Stratified Jet
,”
Dyn. Atmos. Oceans
,
35
(
3
), pp.
265
294
.10.1016/S0377-0265(02)00013-1
35.
Thorpe
,
S. A.
,
1973
, “
Experiments on Instability and Turbulence in a Stratified Shear Flow
,”
J. Fluid Mech.
,
32
, pp.
693
704
.10.1017/S0022112068000972
36.
Yulaeva
,
E.
, and
Wallace
,
J. M.
,
1994
, “
The Signature of ENSO in Global Temperatures and Precipitation Fields Derived From the Microwave Sounding Unit
,”
J. Climate
,
7
, pp.
1719
1736
.10.1175/1520-0442(1994)007<1719:TSOEIG>2.0.CO;2
37.
Vallis
,
G.
,
Gerber
,
E.
,
Kushner
,
P. K.
, and
Cash
,
B.
,
2003
, “
A Mechanism and Simple Dynamical Model of the North Atlantic Oscillation and Annular Modes
,”
J. Atmos. Sci.
,
61
, pp.
264
280
.10.1175/1520-0469(2004)061<0264:AMASDM>2.0.CO;2
38.
Fujimira
,
K.
,
1982
, “
On the Linear Stability of Jeffrey-Hamel Flow in a Convergent Channel
,”
J. Phys. Soc.
,
51
, pp.
2000
2009
.10.1143/JPSJ.51.2000
39.
Cushman-Rosin
,
B.
,
1994
,
Introduction to Geophysical Fluid Dynamics
,”
Prentice Hall Inc.
,
New York
.
40.
Emmert
,
J. T.
,
Fejer
,
B.
, and
Shepherd
,
G.
,
2002
, “
Altitude Dependence of Middle and Low-Lattitude Daytime Thermospheric Disturbance Winds Measured by WINDII
,”
J. Geophys. Res.
,
107
(
A12
), pp.
SIA19.1
SIA19.15
.10.1029/2002JA009646
You do not currently have access to this content.