An elementary closure theory is used to compute the scaling of anisotropic contributions to the correlation function in homogeneous turbulence. These contributions prove to decay with wavenumber more rapidly than the energy spectrum; this property is sometimes called the “recovery of isotropy” at small scales and is a key hypothesis of the Kolmogorov theory. Although comparisons with a more comprehensive theory suggest that the present theory is too crude, its elementary character makes the scaling analysis straightforward. The analysis reveals some characteristic features of anisotropic turbulence, including “angular” energy transfer in wavevector space.

References

References
1.
Sagaut
,
P.
, and
Cambon
,
C.
,
2008
,
Homogeneous Turbulence Dynamics
,
Cambridge University
,
Cambridge, UK
.
2.
Frisch
,
U.
,
1995
,
Turbulence: The Legacy of A. N. Kolmogorov
,
Cambridge University
,
Cambridge, UK
.
3.
Matthaeus
,
W. H.
,
Oughton
,
S.
, and
Zhou
,
Y.
,
2009
, “
Anisotropic Magnetohydrodynamic Spectral Transfer in the Diffusion Approximation
,”
Phys. Rev. E
,
79
, p.
035410
.10.1103/PhysRevE.79.035401
4.
L'vov
,
V. S.
,
Procaccia
,
I.
, and
Tiberkevich
,
V.
,
2003
, “
Scaling Exponents in Anisotropic Hydrodynamic Turbulence
,”
Phys. Rev. E
,
67
, p.
026312
.10.1103/PhysRevE.67.026312
5.
Batchelor
,
G. K.
,
1953
,
The Theory of Homogeneous Turbulence
,
Cambridge University
,
Cambridge, UK
.
6.
Clark
,
T. T.
,
Rubinstein
,
R.
, and
Weinstock
,
J.
,
2009
, “
Reassessment of the Classical Turbulence Closures: The Leith Diffusion Model
,”
J. Turbul.
,
10
, p.
N35
.10.1080/14685240903154172
7.
Leith
,
C. E.
,
1967
, “
Diffusion Approximation to Inertial Energy Transfer in Isotropic Turbulence
,”
Phys. Fluids
,
10
, pp.
1409
1416
.10.1063/1.1762300
8.
Kraichnan
,
R. H.
,
1959
, “
The Structure of Isotropic Turbulence at Very High Reynolds Numbers
,”
J. Fluid Mech.
,
5
, pp.
497
543
.10.1017/S0022112059000362
9.
Zemach
,
C.
,
2013
, private communication.
10.
Weyl
,
H.
,
1939
,
The Classical Groups: Their Invariants and Representations
,
Princeton University
,
Princeton, NJ
.
11.
Orszag
,
S. A.
,
1970
, “
Analytical Theories of Turbulence
,”
J. Fluid Mech.
,
41
, pp.
363
386
.10.1017/S0022112070000642
12.
Kraichnan
,
R. H.
,
1973
, “
Helical Turbulence and Absolute Equilibrium
,”
J. Fluid Mech.
,
59
, pp.
745
752
.10.1017/S0022112073001837
You do not currently have access to this content.