We analyze a large database generated from recent direct numerical simulations (DNS) of passive scalars sustained by a homogeneous mean gradient and mixed by homogeneous and isotropic turbulence on grid resolutions of up to 40963 and extract the turbulent Schmidt number over large parameter ranges: the Taylor microscale Reynolds number between 8 and 650 and the molecular Schmidt number between 1/2048 and 1024. While the turbulent Schmidt number shows considerable scatter with respect to the Reynolds and molecular Schmidt numbers separately, it exhibits a sensibly unique functional dependence with respect to the molecular Péclet number. The observed functional dependence is motivated by a scaling argument that is standard in the phenomenology of three-dimensional turbulence.

References

References
1.
Launder
,
B. E.
,
1976
,
Topics in Applied Physics
,
Springer-Verlag
,
Berlin
.
2.
Yeung
,
P. K.
, and
Sreenivasan
,
K. R.
,
2013
, “
Spectrum of Passive Scalars of High Molecular Diffusivity in Turbulent Mixing
,”
J. Fluid Mech.
,
716
, p.
R14
.10.1017/jfm.2012.632
3.
Yeung
,
P. K.
, and
Sreenivasan
,
K. R.
,
2014
, “
Direct Numerical Simulation of Turbulent Mixing at Very Low Schmidt Number With a Uniform Mean Gradient
,”
Phys. Fluids
,
26
, p.
015107
.10.1063/1.4861070
4.
Antonia
,
R. A.
, and
Browne
,
L. W. B.
,
1987
, “
Conventional and Conditional Prandtl Number in a Turbulent Plane Wake
,”
Int. J. Heat Mass Transfer
,
30
, pp.
2023
2030
.10.1016/0017-9310(87)90083-4
5.
Chua
,
L. P.
, and
Antonia
,
R. A.
,
1990
, “
Turbulent Prandtl Number in a Circular Jet
,”
Int. J. Heat Mass Transfer
,
33
, pp.
331
339
.10.1016/0017-9310(90)90102-Z
6.
Kays
,
W. M.
,
1994
, “
Turbulent Prandtl Number - Where Are We?
,”
ASME J. Heat Transfer
,
116
(2), pp.
284
295
.10.1115/1.2911398
7.
Mydlarski
,
L.
,
2003
, “
Mixed Velocity-Passive Scalar Statistics in High-Reynolds-Number Turbulence
,”
J. Fluid Mech.
,
475
, pp.
173
203
.10.1017/S0022112002002756
8.
Blom
,
J.
,
1970
, “
An Experimental Determination of the Turbulent Prandtl Number in a Developing Temperature Boundary Layer
,” Ph.D. thesis, Technical University, Eindhoven, The Netherlands.
9.
Gotoh
,
T.
, and
Watanabe
,
T.
,
2012
, “
Scalar Flux in a Uniform Mean Scalar Gradient in Homogeneous Isotropic Steady Turbulence
,”
Physica D
,
241
, pp.
141
148
.10.1016/j.physd.2010.12.009
10.
Rogallo
,
R. S.
,
1981
, “
Numerical Experiments in Homogeneous Turbulence
,” NASA Tech. Report No. 81315.
11.
Donzis
,
D. A.
,
Yeung
,
P. K.
, and
Sreenivasan
,
K. R.
,
2008
, “
Dissipation and Enstrophy in Isotropic Turbulence: Scaling and Resolution Effects in Direct Numerical Simulations
,”
Phys. Fluids
,
20
, p.
045108
.10.1063/1.2907227
12.
Donzis
,
D. A.
, and
Yeung
,
P. K.
,
2010
, “
Resolution Effects and Scaling in Numerical Simulations of Passive Scalar Mixing in Turbulence
,”
Physica D
,
239
, pp.
1278
1287
.10.1016/j.physd.2009.09.024
13.
Eswaran
,
V.
, and
Pope
,
S. B.
,
1988
, “
An Examination of Forcing in Direct Numerical Simulations of Turbulence
,”
Comput. Fluids
,
16
, pp.
257
278
.10.1016/0045-7930(88)90013-8
14.
Pumir
,
A.
,
1994
, “
A Numerical Study of the Mixing of a Passive Scalar in 3 Dimensions in the Presence of a Mean Gradient
,”
Phys. Fluids
,
6
, pp.
2118
2132
.10.1063/1.868216
15.
Overholt
,
M. R.
, and
Pope
,
S. B.
,
1996
, “
Direct Numerical Simulation of a Passive Scalar With Imposed Mean Gradient in Isotropic Turbulence
,”
Phys. Fluids
,
8
, pp.
3128
3148
.10.1063/1.869099
16.
Brethouwer
,
G.
,
Hunt
,
J. C. R.
, and
Nieuwstadt
,
F. T. M.
,
2003
, “
Micro-structure and Lagrangian Statistics of the Scalar Field With a Mean Gradient in Isotropic Turbulence
,”
J. Fluid Mech.
,
474
, pp.
193
225
.10.1017/S0022112002002549
17.
Lumley
,
J. L.
,
1964
, “
The Spectrum of Nearly Inertial Turbulence in a Stably Stratified Fluid
,”
J. Atmos. Sci.
,
21
, pp.
99
102
.10.1175/1520-0469(1964)021<0099:TSONIT>2.0.CO;2
18.
Watanabe
,
T.
, and
Gotoh
,
T.
,
2007
, “
Scalar Flux Spectrum in Isotropic Steady Turbulence With a Uniform Mean Gradient
,”
Phys. Fluids
,
19
, p.
121701
.10.1063/1.2821906
19.
Donzis
,
D. A.
,
Sreenivasan
,
K. R.
, and
Yeung
,
P. K.
,
2010
, “
The Batchelor Spectrum for Mixing of Passive Scalars in Isotropic Turbulence
,”
Flow, Turb. Comb.
,
85
, pp.
549
566
.10.1007/s10494-010-9271-6
20.
Sreenivasan
,
K. R.
,
1998
, “
An Update on the Energy Dissipation Rate in Isotropic Turbulence
,”
Phys. Fluids
,
10
, pp.
528
529
.10.1063/1.869575
21.
Donzis
,
D. A.
,
Sreenivasan
,
K. R.
, and
Yeung
,
P. K.
,
2005
, “
Scalar Dissipation Rate and Dissipative Anomaly in Isotropic Turbulence
,”
J. Fluid Mech.
,
532
, pp.
199
216
.10.1017/S0022112005004039
22.
Sreenivasan
,
K. R.
,
1984
, “
On the Scaling of the Turbulence Energy-Dissipation Rate
,”
Phys. Fluids
,
27
, pp.
1048
1051
.10.1063/1.864731
23.
Kaneda
,
Y.
,
Ishihara
,
T.
,
Yokokawa
,
M.
,
Itakura
,
K.
, and
Uno
,
A.
,
2003
, “
Energy Dissipation Rate and Energy Spectrum in High Resolution Direct Numerical Simulations of Turbulence in a Periodic Box
,”
Phys. Fluids
,
15
, pp.
L21
L24
.10.1063/1.1539855
24.
Sreenivasan
,
K.
,
1995
, “
The Energy Dissipation Rate in Turbulent Shear Flows
,”
Developments in Fluid Mechanics and Aerospace Sciences
,
Interline, Bangalore, India
, pp.
159
190
.
You do not currently have access to this content.