The flow induced by a round turbulent offset jet in a low-aspect ratio cylinder is investigated experimentally, with applications to degassing of U.S. Strategic Petroleum Reserves (SPR). Particle image velocimetry and flow visualization are used for flow diagnostics. The measurements include the jet penetration (mixing) depth l, jet spreading rate, and the mean velocity/vorticity fields for different offset positions Δ. With the introduction of offset, the flow patterns change drastically. For 0 < Δ/D < 0.2 the jet deflects toward the wall while precessing (as in the axisymmetric case), for 0.2 < Δ/D < 0.4 the jet hugs the wall but with an oscillating tail, and for 0.45 < Δ/D the jet appears as a wall jet. In all cases, the jet is destroyed at a certain distance (mixing or penetration depth) from the origin. This mixing depth takes its lowest value for 0 < Δ/D < 0.2, with l ≈ (3.2–3.6)D, becomes maximum at Δ/D = 0.4 with l ≈ 5.2D, and drops to l ≈ 4.5D when the jet is close to the wall. Recommendations are made for suitable Δ/D values for optimal operation of SPR degassing.

References

References
1.
List
,
E. J.
,
1982
, “
Turbulent Jets and Plumes
,”
J. Fluid Mech.
,
14
, pp.
189
212
.10.1146/annurev.fl.14.010182.001201
2.
Blake
,
W. K.
, and
Powell
,
A.
,
1986
, “
The Development of Contemporary Views of Flow-Tone Generation
,”
Recent Advances in Aeroacoustics
,
A.
Krothapali
and
C. A.
Smith
, Eds.,
Springer
,
New York
, pp.
247
325
.
3.
Broderson
,
S.
,
Metzger
,
D. E.
, and
Fernando
,
H. J. S.
,
1996
, “
Flows Generated by the Impingement of a Jet on a Rotating Surface—Part I: Basic Flow Patterns
,”
ASME J. Fluids Eng.
,
118
(
1
), pp.
62
67
.10.1115/1.2817514
4.
Launder
,
B. E.
, and
Rodi
,
W.
,
1983
, “
The Turbulent Wall Jet Measurements and Modeling
,”
Annu. Rev. Fluid Mech.
,
15
, pp.
429
459
.10.1146/annurev.fl.15.010183.002241
5.
Bourque
,
C.
, and
Newman
,
B. G.
,
1960
, “
Reattachment of a Two-Dimensional Incompressible Jet to an Adjacent Flat Plate
,”
Aeronaut. Q.
,
11
, pp.
201
232
.
6.
Miozzi
,
M.
,
Lalli
,
F.
, and
Romano
,
G. P.
,
2009
, “
Experimental Investigation of a Free-Surface Turbulent Jet With Coanda Effect
,”
Exp. Fluids
,
49
(
1
), pp.
341
353
.10.1007/s00348-010-0885-1
7.
Risso
,
F.
, and
Fabre
,
J.
,
1997
, “
Diffusive Turbulence in a Confined Jet Experiment
,”
J. Fluid Mech.
,
337
, pp.
233
261
.10.1017/S0022112097004965
8.
Gu
,
R.
,
1996
, “
Modeling Two-Dimensional Turbulent Offset Jets
,”
J. Hydraul. Eng.
,
122
(
11
), pp.
617
624
.10.1061/(ASCE)0733-9429(1996)122:11(617)
9.
Villermaux
,
E.
, and
Hopfinger
,
E. J.
,
1994
, “
Self-Sustained Oscillations of a Confined Jet: A Case Study for the Non-Linear Delayed Saturation Model
,”
Physica D
72
(
3
), pp.
230
243
.10.1016/0167-2789(94)90212-7
10.
Liberzon
,
D.
, and
Fernando
,
H. J. S.
, “
Pressure Distribution in Confined Jet Flow
,”
ASME J. Fluids Eng.
, submitted.
11.
Konig
,
O.
, and
Fiedler
,
H. E.
,
1991
, “
The Structure of Round Turbulent Jets in Counterflow: A Flow Visualization Study
,”
Adv. Turb.
3
, pp.
61
66
.10.1007/978-3-642-84399-0
12.
Voropayev
,
S. I.
,
Sanchez
,
X.
,
Nath
,
C.
,
Webb
,
S.
, and
Fernando
,
H. J. S.
,
2011
, “
Evolution of a Confined Turbulent Jet in a Long Cylindrical Cavity: Homogeneous Fluids
,”
Phys. Fluids
,
23
, p.
115106
.10.1063/1.3662442
13.
Lord
,
D. L.
, and
Rudeen
,
D. K.
,
2005
, “
Summary of Degas II Performance at the US Strategic Petroleum Reserve Big Hill Site
,” Technical Report, SAND2007-5564, Sandia National Laboratories. Albuquerque, NM.
14.
Voropayev
,
S. I.
,
Nath
,
C.
, and
Fernando
,
H. J. S.
,
2012
, “
Mixing by Turbulent Buoyant Jets in Slender Containers
,”
Phys. Lett. A
,
376
(
45
), pp.
3213
3218
.10.1016/j.physleta.2012.09.010
15.
Keane
,
R. D.
, and
Adrian
R. J.
,
1992
, “
Theory of Cross-Correlation Analysis of PIV Images
,”
Appl. Sci. Res.
49
, pp.
191
215
.10.1007/BF00384623
You do not currently have access to this content.