The nonlinear growth of instabilities of an outward propagating, but decelerating, cylindrical interface separated by fluids of different densities is investigated. Single mode perturbations are introduced around the contact-surface, and their evolution is studied by conducting inviscid 2D and 3D numerical simulations. In the past, a significant amount of work has been carried out to model the development of the perturbations in a planar context where the contact surface is stationary or in a spherical context where a point-source blast wave is initiated at the origin. However, for the finite-source cylindrical blast-wave problem under consideration, there is a need for a framework which includes additional complexities such as compressibility, transition from linear to nonlinear stages of instability, finite thickness of the contact interface (CI), and time-dependent deceleration of the contact surface. Several theoretical potential flow models are presented. The model which is able to capture the above mentioned effects (causing deviation from the classical Rayleigh–Taylor Instability (RTI)) is identified as it compares reasonably well with the DNS results. Only for higher wavenumbers, the early development of secondary instabilities (Kelvin–Helmholtz) complicates the model prediction, especially in the estimation of the high-density fluid moving into low-density ambient.

References

References
1.
Friedman
,
M. P.
,
1961
, “
A Simplified Analysis of Spherical and Cylindrical Blast Waves
,”
J. Fluid Mech.
,
11
(
1
), pp.
1
15
.10.1017/S0022112061000810
2.
Rayleigh
,
L.
,
1883
, “
Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density
,”
Scientific Papers II
,
Cambridge University Press
,
Cambridge, UK
, pp.
200
207
.
3.
Taylor
,
G.
,
1950
, “
The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to their Planes—I
,”
Proc. R. Soc. Lond. A
,
201
(
1065
), pp.
192
196
.10.1098/rspa.1950.0052
4.
Sharp
,
D. H.
,
1984
, “
An Overview of Rayleigh–Taylor Instability
,”
Phys. D
,
12
(
1–3
), pp.
3
18
.10.1016/0167-2789(84)90510-4
5.
Kull
,
H. J.
,
1991
, “
Theory of the Rayleigh–Taylor instability
,”
Phys. Rep.-Rev. Sec. Phys. Lett.
,
206
(
5
), pp.
197
325
.
6.
Alon
,
U.
,
Hecht
,
J.
,
Ofer
,
D.
, and
Shvarts
,
D.
,
1995
, “
Power Laws and Similarity of Rayleigh–Taylor and Richtmyer–Meshkov Mixing Fronts at all Density Ratios
,”
Phys. Rev. Lett.
,
74
(
4
), pp.
534
537
.10.1103/PhysRevLett.74.534
7.
Goncharov
,
V.
,
2002
, “
Analytical Model of Nonlinear, Single-Mode, Classical Rayleigh–Taylor Instability at Arbitrary Atwood Numbers
,”
Phys. Rev. Lett.
,
88
(
13
), p.
134502
.10.1103/PhysRevLett.88.134502
8.
Waddell
,
J.
,
Niederhaus
,
C.
, and
Jacobs
,
J.
,
2001
, “
Experimental Study of Rayleigh–Taylor Instability: Low Atwood Number Liquid Systems with Single-Mode Initial Perturbations
,”
Phys. Fluids
,
13
(
5
), pp.
1263
1273
.10.1063/1.1359762
9.
Glimm
,
J.
,
Li
,
X. L.
, and
Lin
,
A. D.
,
2002
, “
Nonunifrom Approach to Terminal Velocity for Single-Mode Rayleigh–Taylor Instability
,”
Acta Math. Appl. Sin.
,
18
(
1
), pp.
1
8
.10.1007/s102550200001
10.
Ramaprabhu
,
P.
,
Dimonte
,
G.
,
Young
,
Y.-N.
,
Calder
,
A. C.
, and
Fryxell
,
B.
,
2006
, “
Limits of the Potential Flow Approach to the Single-Mode Rayleigh-Taylor Problem
,”
Phys. Rev. E
,
74
, p.
066308
.10.1103/PhysRevE.74.066308
11.
Layzer
,
D.
,
1955
, “
On the Instability of Superposed Fluids in a Gravitational Field
,”
Astrophys. J.
,
122
(
1
), pp.
1
12
.10.1086/146048
12.
Davies
,
R. M.
, and
Taylor
,
G.
,
1950
, “
The Mechanics of Large Bubbles Rising Through Extended Liquids and Through Liquids in Tubes
,”
Proc. R. Soc. Lond. A
,
200
(
1062
), pp.
375
390
.10.1098/rspa.1950.0023
13.
Hansom
,
J. C. V.
,
Rosen
,
P. A.
,
Goldack
,
T. J.
,
Oades
,
K.
,
Fieldhouse
,
P.
,
Cowperthwaite
,
N.
,
Youngs
,
D. L.
,
Mawhinney
,
N.
, and
Baxter
,
A. J.
,
1990
, “
Radiation Driven Planar Foil Instability and Mix Experiments at the AWE HELEN Laser
,”
Laser Part. Beams
,
8
(
1–2
), pp.
51
71
.10.1017/S0263034600007825
14.
Oron
,
D.
,
Arazi
,
L.
,
Kartoon
,
D.
,
Rikanati
,
A.
,
Alon
,
U.
, and
Shvarts
,
D.
,
2001
, “
Dimensionality Dependence of the Rayleigh–Taylor and Richtmyer–Meshkov Instability Late-Time Scaling Laws
,”
Phys. Plasmas
,
8
(
6
), pp.
2883
2889
.10.1063/1.1362529
15.
Srebro
,
Y.
,
Elbaz
,
Y.
,
Sadot
,
O.
,
Arazi
,
L.
, and
Shvarts
,
D.
,
2003
, “
A General Buoyancy-Drag Model for the Evolution of the Rayleigh–Taylor and Richtmyer–Meshkov Instabilities
,”
Laser Part. Beams
,
21
(
3
), pp.
347
353
.
16.
Mankbadi
,
M. R.
, and
Balachandar
,
S.
,
2012
, “
Compressible Inviscid Instability of Rapidly Expanding Spherical Material Interfaces
,”
Phys. Fluids
,
24
(
3
), p.
034106
.10.1063/1.3689183
17.
Miles
,
A.
,
2004
, “
Bubble Merger Model for the Nonlinear Rayleigh–Taylor Instability Driven by a Strong Blast Wave
,”
Phys. Plasmas
,
11
(
11
), pp.
5140
5155
.10.1063/1.1790498
18.
Kuranz
,
C. C.
,
Drake
,
R. P.
,
Harding
,
E. C.
,
Grosskopf
,
M. J.
,
Robey
,
H. F.
,
Remington
,
B. A.
,
Edwards
,
M. J.
,
Miles
,
A. R.
,
Perry
,
T. S.
,
Blue
,
B. E.
,
Plewa
,
T.
,
Hearn
,
N. C.
,
Knauer
,
J. P.
,
Arnett
,
D.
, and
Leibrandt
,
D. R.
,
2009
, “
Two-Dimensional Blast-Wave-Driven Rayleigh-Taylor Instability: Experiment and Simulation
,”
Astrophys. J.
,
696
(
1
), pp.
749
759
.10.1088/0004-637X/696/1/749
19.
Miles
,
A. R.
,
2009
, “
The Blast-Wave-Driven Instability as a Vehicle for Understanding Supernova Explosion Structure
,”
Astrophys. J.
,
696
(
1
), pp.
498
514
.10.1088/0004-637X/696/1/498
20.
Taylor
,
G.
,
1950
, “
The Formation of a Blast Wave by a Very Intense Explosion. 1. Theoretical Discussion
,”
Proc. R. Soc. Lond. A
,
201
(
1065
), pp.
159
174
.10.1098/rspa.1950.0049
21.
Sedov
,
L.
,
1946
, “
The Movement of Air in a Strong Explosion
,”
Dokl. Akad. Nauk SSSR
,
52
, pp.
17
20
.
22.
Richtmyer
,
R. D.
,
1960
, “
Taylor Instability in Shock Acceleration of Compressible Fluids
,”
Commun. Pure Appl. Math.
,
13
(
2
), pp.
297
319
.10.1002/cpa.3160130207
23.
Meshkov
,
E. E.
,
1969
, “
Instability of the Interface of Two Gases Accelerated by a Shock Wave
,”
Fluid Dyn.
,
4
(
5
), pp.
101
104
.10.1007/BF01015969
24.
Dimonte
,
G.
, and
Schneider
,
M.
,
2000
, “
Density Ratio Dependence of Rayleigh-Taylor Mixing for Sustained and Impulsive Acceleration Histories
,”
Phys. Fluids
,
12
(
2
), pp.
304
321
.10.1063/1.870309
25.
Sohn
,
S.
,
2003
, “
Simple Potential-Flow Model of Rayleigh–Taylor and Richtmyer–Meshkov Instabilities for all Density Ratios
,”
Phys. Rev. E
,
67
(
2
), p.
026301
.10.1103/PhysRevE.67.026301
26.
Hecht
,
J.
,
Alon
,
U.
, and
Shvarts
,
D.
,
1994
, “
Potential Flow Models of Rayleigh–Taylor and Richtmyer–Meshkov Bubble Fronts
,”
Phys. Fluids
,
6
(
12
), pp.
4019
4030
.10.1063/1.868391
27.
Kuranz
,
C. C.
,
Drake
,
R. P.
,
Grosskopf
,
M. J.
,
Budde
,
A.
,
Krauland
,
C.
,
Marion
,
D. C.
,
Visco
,
A. J.
,
Ditmar
,
J. R.
,
Robey
,
H. F.
,
Remington
,
B. A.
,
Miles
,
A. R.
,
Cooper
,
A. B. R.
,
Sorce
,
C.
,
Plewa
,
T.
,
Hearn
,
N. C.
,
Killebrew
,
K. L.
,
Knauer
,
J. P.
,
Arnett
,
D.
, and
Donajkowski
,
T.
,
2009
, “
Three-Dimensional Blast-Wave-Driven Rayleigh–Taylor Instability and the Effects of Long-Wavelength Modes
,”
Phys. Plasmas
,
16
(
5
), p.
053610
.10.1063/1.3099320
28.
Lindl
,
J.
,
Amendt
,
P.
,
Berger
,
R.
,
Glendinning
,
S.
,
Glenzer
,
S.
,
Haan
,
S.
,
Kauffman
,
R.
,
Landen
,
O.
, and
Suter
,
L.
,
2004
, “
The Physics Basis for Ignition Using Indirect-Drive Targets on the National Ignition Facility
,”
Phys. Plasmas
,
11
(
2
), pp.
339
491
.10.1063/1.1578638
29.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference-Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.10.1016/0021-9991(81)90128-5
30.
Haselbacher
,
A.
,
2005
, “
A WENO Reconstruction Algorithm for Unstructured Grids Based on Explicit Stencil Construction
,” AIAA Paper No. 2005-0879.
31.
Parmar
,
M.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2009
, “
Modeling of the Unsteady Force for Shock-Particle Interaction
,”
Shock Waves
,
19
(
4
), pp.
317
329
.10.1007/s00193-009-0206-x
32.
Parmar
,
M.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2010
, “
Improved Drag Correlation for Spheres and Application to Shock-Tube Experiments
,”
AIAA J.
,
48
(
6
), pp.
1273
1276
.10.2514/1.J050161
33.
Ling
,
Y.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2009
, “
Transient Phenomena in One-Dimensional Compressible Gas-Particle Flows
,”
Shock Waves
,
19
(
1
), pp.
67
81
.10.1007/s00193-009-0190-1
34.
Ling
,
Y.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2011
, “
Importance of Unsteady Contributions to Force and Heating for Particles in Compressible Flows. Part 2: Application to Particle Dispersal by Blast Waves
,”
Int. J. Multiph. Flow
,
37
(
9
), pp.
1013
1025
.10.1016/j.ijmultiphaseflow.2011.07.002
35.
Ling
,
Y.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2011
, “
Importance of Unsteady Contributions to Force and Heating for Particles in Compressible Flows Part 1: Modeling and Analysis for Shock-Particle Interaction
,”
Int. J. Multiph. Flow
,
37
(
9
), pp.
1026
1044
.10.1016/j.ijmultiphaseflow.2011.07.001
36.
Balakrishnan
,
K.
,
Genin
,
F.
,
Nance
,
D. V.
, and
Menon
,
S.
,
2010
, “
Numerical Study of Blast Characteristics from Detonation of Homogeneous Explosives
,”
Shock Waves
,
20
(
2
), pp.
147
162
.10.1007/s00193-009-0236-4
37.
Brode
,
H. L.
,
1955
, “
Numerical Solutions of Spherical Blast Waves
,”
J. Appl. Phys.
,
26
(
6
), pp.
766
775
.10.1063/1.1722085
38.
Brode
,
H. L.
,
1955
, “
The Blast from a Sphere of High-Pressure Gas
,” Report No. P-582 in RAND Corporation Paper Series, Defense Technical Information Center, Santa Monica, CA.
39.
Lin
,
S.
,
1954
, “
Cylindrical Shock Waves Produced by Instantaneous Energy Release
,”
J. Appl. Phys.
,
25
(
1
), pp.
54
57
.10.1063/1.1721520
40.
Yu
,
H.
, and
Livescu
,
D.
,
2008
, “
Rayleigh–Taylor Instability in Cylindrical Geometry with Compressible Fluids
,”
Phys. Fluids
,
20
(
10
), p.
104103
.10.1063/1.2991431
You do not currently have access to this content.