It is accustomed to think that turbulence models based on solving the Reynolds-averaged Navier–Stokes (RANS) equations require empirical functions to accurately reproduce the behavior of flow characteristics of interest, particularly near a wall. The current paper analyzes how choosing a model for pressure-strain correlations in second-order closures affects the need for introducing empirical functions in model equations to reproduce the flow behavior near a wall correctly. An axially rotating pipe flow is used as a test flow for the analysis. Results of simulations demonstrate that by using more physics-based models to represent pressure-strain correlations, one can eliminate wall functions associated with such models. The higher the Reynolds number or the strength of imposed rotation on a flow, the less need there is for empirical functions regardless of the choice of a pressure-strain correlation model.

References

References
1.
Monin
,
A. S.
, and
Yaglom
,
A. M.
,
1979
,
Statistical Fluid Mechanics: Mechanics of Turbulence
, Vol.
1
,
The MIT Press
,
Cambridge, MA
, Chap. 4.
2.
Lumley
,
J. L.
,
1975
, “
Introduction
,”
Lecture Series 76, Prediction Methods for Turbulent Flows
,
von Kármán Institute for Fluid Dynamics
,
Rhode-St-Genese, Belgium
.
3.
Rumsey
,
C. L.
,
Gatski
,
T. B.
,
Sellers
III,
W. L.
,
Vatsa
,
V. N.
, and
Viken
,
S. A.
,
2004
, “
Summary of the 2004 CFD Validation Workshop on Synthetic Jets and Turbulent Separation Control
,”
Proc. 2nd AIAA Flow Control Conference
, AIAA-2004-2217,.
4.
Johansson
,
T. G.
, and
Davidson
,
L.
,
2006
, “
The 11th ERCOFTAC Workshop on Refined Turbulence Modelling
,”
the Czestochowa University of Technology
,
Czestochowa, Poland
,
ERCOFTAC Bulletin
,
69
-
2006
.
5.
Thiele
,
F.
, and
Jakirlic
,
S.
,
2007
, “
The 12th ERCOFTAC/IAHR/COST Workshop on Refined Turbulence Modelling
,”
the Czestochowa University of Technology
,
Czestochowa, Poland
,
ERCOFTAC Bulletin
,
75
-
2007
.
6.
Torii
,
S.
, and
Yang
,
W.
,
1995
, “
Numerical Prediction of Fully Developed Turbulent Swirling Flows in an Axially Rotating Pipe by Means of a Modified k-ε Turbulence Model
,”
Int. J. Numer. Meth. Heat Fluid Flow
,
5
, pp.
175
183
.10.1108/EUM0000000004116
7.
Hanjalić
,
K.
, and
Launder
,
B.
,
2011
,
Modelling Turbulence in Engineering and the Environment
,
Cambridge University Press
,
Cambridge, UK
.
8.
Kurbatskii
,
A. F.
,
Poroseva
,
S. V.
, and
Yakovenko
,
S. N.
,
1995
, “
Calculation of Statistical Characteristics of a Turbulent Flow in a Rotating Cylindrical Pipe
,”
High Temp.
,
33
(
5
), pp.
738
748
.
9.
Kurbatskii
,
A. F.
, and
Poroseva
,
S. V.
,
1997
, “
A Model for Calculating the Three Components of the Excess for the Turbulent Field of Flow Velocity in a Round Pipe Rotating About Its Longitudinal Axis
,”
High Temp.
,
35
(
3
), pp.
432
440
.
10.
Kurbatskii
,
A. F.
, and
Poroseva
,
S. V.
,
1999
, “
Modelling Turbulent Diffusion in a Rotating Cylindrical Pipe Flow
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
341
348
.10.1016/S0142-727X(99)00009-0
11.
Daly
,
B. J.
, and
Harlow
,
F. H.
,
1970
, “
Transport Equations in Turbulence
,”
Phys. Fluids
,
13
, pp.
2634
2649
.10.1063/1.1692845
12.
So
,
R. M. C.
, and
Yoo
,
G. J.
,
1986
, “
On the Modeling of Low-Reynolds-Number Turbulence
,”
NASA CR 399
4
.
13.
Poroseva
,
S. V.
,
Kassinos
,
S. C.
,
Langer
,
C. A.
, and
Reynolds
,
W. C.
,
2002
, “
Structure-Based Turbulence Model: Application to a Rotating Pipe Flow
,”
Phys. Fluids
,
14
(
4
), pp.
1523
1532
.10.1063/1.1458008
14.
Kassinos
,
S. C.
,
Langer
,
C. A.
,
Haire
,
S. L.
, and
Reynolds
,
W. C.
,
2000
, “
Structure-Based Turbulence Modeling for Wall–Bounded Flows
,”
Int. J. Heat Fluid Flow
,
21
, pp.
599
605
.10.1016/S0142-727X(00)00050-3
15.
Rotta
,
J. C.
,
1951
, “
Statistische Theorie Nichthomogener Turbulenz
,”
Z. Phys.
,
129
, pp.
547
572
; 131, pp. 51–77.10.1007/BF01330059
16.
Poroseva
,
S. V.
,
2001
, “
Modeling the “Rapid” Part of the Velocity/Pressure-Gradient Correlation in Inhomogeneous Turbulence
,”
Annual Research Brief 2001, Center for Turbulence Research
,
NASA-Ames/Stanford University
, pp.
367
374
.
17.
Poroseva
,
S. V.
,
2000
, “
New Approach to Modeling the Pressure-Containing Correlations
,”
Proc. of the 3rd Inter. Symposium on Turbulence
,
Heat and Mass Transfer
,
Nagoya, Japan
, pp.
487
493
.
18.
Poroseva
,
S. V.
, and
Iaccarino
,
G.
,
2001
, “
Simulating Separated Flows Using the k-ε Model
,”
Annual Research Brief 2001, Center for Turbulence Research
,
NASA-Ames/Stanford Univ
., pp.
375
384
.
19.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in Development of a Reynolds-Stress Turbulent Closure
,”
J. Fluid Mech.
,
68
, pp.
537
566
.10.1017/S0022112075001814
20.
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1993
, “
On Explicit Algebraical Stress Models for Complex Turbulent Flow
,”
J. Fluid Mech.
,
254
, pp.
59
78
.10.1017/S0022112093002034
21.
Speziale
,
C. G.
,
Sarkar
,
S.
, and
Gatski
,
T. B.
,
1991
, “
Modeling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical System Approach
,”
J. Fluid Mech.
,
227
, pp.
245
272
.10.1017/S0022112091000101
22.
Kassinos
,
S. C.
,
Reynolds
,
W. C.
, and
Rogers
,
M. M.
,
2001
, “
One-Point Turbulence Structure Tensors
,”
J. Fluid Mech.
,
428
, pp.
213
248
.10.1017/S0022112000002615
23.
Spalding
,
D. B.
,
1977
,
GENMIX: A General Computer Program for Two-Dimensional Parabolic Phenomena
,
Pergamon
,
New York.
24.
Kikuyama
,
K
.,
Murakami
,
M.
,
Nishibori
,
K.
, and
Maeda
,
K.
,
1983
, “
Flow in an Axially Rotating Pipe (a Calculation of Flow in the Saturated Region)
,”
Bull. JSME
,
26
, pp.
506
513
.10.1299/jsme1958.26.506
25.
Zaets
,
P. G.
,
Safarov
,
N. A.
, and
Safarov
R. A.
1985
, “
Experimental Study of the Behavior of Turbulence Characteristics in a Pipe Rotating Around Its Axis
,”
Modern Problems of Continuous Medium Mechanics
,
Moscow Physics and Technics Institute
,
Moscow, Russia
, pp.
136
142
(in Russian).
26.
Nishibori
,
K.
,
Kikuyama
,
K.
, and
Murakami
,
M.
,
1987
, “
Laminarization of Turbulent Flow in the Inlet Region of an Axially Rotating Pipe
,”
Bull. JSME
,
30
, pp.
255
262
.
27.
Imao
,
S.
,
Itoh
,
M.
, and
Harada
,
T.
,
1996
, “
Turbulent Characteristics of the Flow in an Axially Rotating Pipe
,”
Int. J. Heat Fluid Flow
,
17
, pp.
444
451
.10.1016/0142-727X(96)00057-4
28.
Laufer
,
J
.,
1954
, “
The Structure of Turbulence in Fully Developed Pipe Flow
,”
NASA Report 1174
.
You do not currently have access to this content.